CITA #ICAT CIAR Dick Bond

- **Parameterizing the Universe: early U & inflation; matter content;** extragalactic backgrounds; Galactic foregrounds; internal calibrations of probes; etal
- **Pre-WMAP2 view of the "basic parameters**", their emergence and stable evolution. Adding parameters, theory priors cost function, baroqueness, taste?
- How parameter determinations may improve with planned CMB+ext experiments: ext= z-surveys, cl-surveys (SZ/Opt/X), weak lensing surveys
- break degeneracies of cosmic parameters
- CMB high-L frontier: near term, cbipol, boom2Kpol, acbar. Long term QUaD, ACT, SPT, Quiet fcasts; Planck
- CMB Polarization, High & Low-L: CBI, BOOM2K, DASI, WMAP 2yr, 4yr, & e.g. BICEP, QUaD, QUIET, (Polarbear), cf. Planck

"The Seven Pillars" of the CMB (of inflationary adiabatic fluctuations)

& the Seven++ Parameters of CMB Phenomenology

BSI

Minimal Inflationary parameter set

Broken Scale

Invariance

Large Scale Gravitational Potential Anisotropies (COBE/FIRS)

- Acoustic Peaks/Dips (Boom/CBI/WMAP)
- Damping Tail (CBI/Acbar)
- ► Gaussianity (COBE/Boom/WMAP)

✓ Polarization, TE correlation (DASI/WMAP ... CBI/B2K)

•Cosmic Web Secondary Anisotropies (CBI/Acbar/BIMA)

•Gravity Waves, B-type polarization

neutrino mass, decaying particles, nonGaussian statistics, Isocurvature modes (subdominant, defects), beyond Einstein gravity (JBD), ...

Theory Landscape vintage BJ 98

CMBfast on the market and was well tested, Santa Barbara and aftermath. (Even higher precision testing this past year though.)

Corrections for helium and hydrogen recombination complexity done.

Inflation-based LCDM sequence, GW and tilt, running index as simplest breaking (back to early 80s), radically broken scale invariance, 2+-field inflation, subdominant isocurvatures & other baroque add-ons. Massive neutrinos

COBE low-L anomaly was there. Radically broken scale invariance. flat & open topology (recently closed) explored

Cosmic string and defect hit because emerging first peak from heterogeneous data

(1st peak: toco, boom-NA, then boom-98, then ...)

String-motivated cosmology, extra dimensions, brane-ology, reflowering of inflaton/isocon models (includes curvaton), w_Q, all largely ahead.

String Theory Landscape

To influence C_{l} by "fundamental physics":

Act on the k-scales of relevance for the CMB probe – 3 epochs

(1) k_{hor} (t) on its inward sweep during inflation or inflation-proxy (BSI, radical or not, waterfall ends to inflation, extra dimension signatures, trans-Planckian or rapid acceleration change signatures??? Small topologies and other baroqueness)

(2) k_{hor}(t) on its outward sweep through decoupling/damping
 (constituents of the universe, modified gravity, can there be any true extra dimension signatures from this epoch – JBD only?)

(3) $k_{hor}(t)$ as part of its turn-around to an inward sweep (Q etal)

Seven++ Parameters of CMB Phenomenology

$egin{aligned} \Omega_k &= 1 - \Omega_{ ext{tot}} \ \omega_b &= \Omega_b h^2 \ \omega_c &= \Omega_c h^2 \ \Omega_\Lambda \ \mathcal{C}_{10} &\sim \sigma_8^2 \ n_s \ au_c \ au_c \end{aligned}$	Minimal Inflationary parameter set
$egin{array}{c} \Omega_Q \ w_Q \ n_t \ R = T/S \ \mathrm{BSI} \end{array}$	 Quintessence Gravity Waves Broken Scale Invariance

➢BSI n_s(k) "full" freedom, n_t(k) much freedom – expense of "baroque?" theory priors via V(phi,...) features.

deceleration parameter q(lna). expand in q, q', q'',...

➤uniform acceleration n_s is constant

running index dn_s/dlnk constant

➢EE Polarization Breaks BSI degeneracy; LSS can as well

➤"topology" L_small/ (2*chi_horizon) <<1 disallowed, ~1 possible, baroque

•GW content: T/S from CMB+LSS TT

•Planck T/S to <~ 0.06 precision B-type polarization. CMBpol

•wQ as wQ, wQ', wQ'', ...

neutrino mass, decaying particles, nonGaussian statistics, Isocurvature modes (subdominant, defects), beyond Einstein gravity (JBD), ...

Table 2. Candidate parameters: those which might be relevant for cosmological observations, but for which there is presently no convincing evidence requiring them. They are listed so as to take the value zero in the base cosmological model. Those above the line are parameters of the background homogeneous cosmology, and those below describe the perturbations.

Ω_k	spatial curvature	
$N_{ u} - 3.04$	effective number of neutrino species (CMBFAST definition)	
$m_{ u_i}$	neutrino mass for species 'i'	Liddle,
	[or more complex neutrino properties]	Manday
$m_{ m dm}$	(warm) dark matter mass	Monday Jun
w + 1	dark energy equation of state	28,2004
dw/dz	redshift dependence of w	20, 200 .
	[or more complex parametrization of dark energy evolution]	
$c_{ m S}^2 - 1$	effects of dark energy sound speed	
$1/r_{top}$	topological identification scale	
	[or more complex parametrization of non-trivial topology]	
$d\alpha/dz$	redshift dependence of the fine structure constant	
dG/dz	redshift dependence of the gravitational constant	+ many many
		moro
n-1	scalar spectral index	more
$dn/d\ln k$	running of the scalar spectral index	parameters
r	tensor-to-scalar ratio	
$r + 8n_{\mathrm{T}}$	violation of the inflationary consistency equation	e a "blind"
$dn_{\rm T}/d\ln k$	running of the tensor spectral index	c.g. bind
kcut	large-scale cut-off in the spectrum	search for
A_{feature}	amplitude of spectral feature (peak, dip or step)	pattorps in the
k_{feature}	and its scale	patterns in the
	or adiabatic power spectrum amplitude parametrized in N bins	primordial
İ nl	quadratic contribution to primordial non-gaussianity	
	[or more complex parametrization of non-gaussianity]	power
\mathcal{P}_S	CDM isocurvature perturbation	spectrum
n_S	and its spectral index	opeenan
$\mathcal{P}_{S\mathcal{R}}$	and its correlation with adiabatic perturbations	
$n_{SR} - n_S$	and the spectral index of that correlation	
	[or more complicated multi-component isocurvature perturbation]	
Gu	cosmic string component of perturbations	

SP91 COBE	Current pre-W	MAP2: Jan04 + \	/SA2	(& calibration X 2!)	
FIRS	CBI2yr of Mar	03 = Feb04			
Tenerife	Spectrum method, with WMAP and the Interferometry Experiments			WMAP+cbi-1yr +achar	
MAX					
MSAM	as well using a	the Grand Unifie	d	cf. WMAPext =	
WhiteDish	Jan04 = Jun03	3 IS Mar03 with	ratod		
Argo			Other Jaho	J	
SP94		Other Jan00	Other IonO	Ouler Jalloo	
SK95		CODL	COBE	Other Icn00	
BAM		COBE	Maxima	Maxima	
Cat	Other Janou	Maxima	DASI	DASI	
Ovro-22.7	Other Ion00		Arcneops	B98_2.9%	
r yuloli SuZIF	COBE	DASI	A nole o rec	Acuar	
V 1 per	Maxima	B98_1.8%	B98 2.9%	Achar	
QMAP		D OO 1 00/	Acbar	VSA-ext-cal	
Тосо	DASI	VSA	VSA-ext	CBI-2yr-cal	
Boom-NA	B98_1.8%	CBI	CBI-2yr	WMAP1	
Jan00	Jan02	Jun02	Jan03	Mar03~Jan04	

Pre-WMAP1 ⇔ Post-WMAP1 Parameters very similar. Precision +

[Bond, Contaldi & Pogosyan astro-ph/0310735]

MCMC	Jan02	Jun02	Jan03	Mar03	Mar03(899db)
flat+weak					
$\Omega_b h^2$	$.0224^{+.0024}_{0024}$	$.0217 \substack{+ & 0022 \\ - & 0022 \end{bmatrix}$	$.0219^{+.0018}_{0018}$	$.0229^{+.0010}_{0010}$	$.0228^{+.0013}_{0013}$
$\Omega_{cdm} h^2$	$.142^{+.025}_{025}$	$.135 ^{+.025}_{025}$	$.129^{+.019}_{019}$	$.118^{+.010}_{010}$	$.116^{+.010}_{010}$
n_s	$1.02^{+.079}_{079}$	$0.988 \substack{+.066 \\066}$	$0.974^{+.048}_{048}$	$0.966^{+.027}_{027}$	$0.965^{+.015}_{013}$
Ω_{Λ}	$0.54^{+.20}_{20}$	$0.56^{+.20}_{20}$	$0.64^{+.13}_{13}$	$0.72^{+.05}_{05}$	$0.73^{+.05}_{05}$
h	0.63 ± 0.10	0.63 ± 0.10	0.67 ± 0.09	0.71 ± 0.05	0.72 ± 0.05
age	13.7 ± 0.6	13.9 ± 0.5	13.6 ± 0.40	13.6 ± 0.22	13.6 ± 0.12
Ω_m	0.46 ± 0.20	0.45 ± 0.20	0.36 ± 0.13	0.29 ± 0.05	0.27 ± 0.05
σ_8	$1.04^{+.18}_{18}$	$0.94^{+.14}_{14}$	$0.89^{+.09}_{09}$	$0.85^{+.06}_{06}$	$0.83^{+.05}_{06}$

<~ 2 sigma indication of [dn_s/dlnk] <0 in Mar03, Jan04 data

w_Q<-0.7 @2sigma is stable – database or MCMC. Need CMB+SN1 not CMB+HST-h

Tensor/Scalar <~ 0.7 @ 2 sigma; target <~ 0.3 B

Very good agreement MCMC cf. fixed grid

Tc prior on TT mimics Tc constraint from the TE OK

Methods: **Monte Carlo Markov Chain**. **"Fixed" adaptive grid.** Extensive comparison show very good agreement (BCP03).

MCMC uses only external variables with a statistically-determined grid. "Fixed" grid method uses internal + external variables.

Internal variables: relax to maximum likelihood and characterize errors by Fisher or curvature matrix. The distribution of the variables may involve a nonlinear function with a suitably transformed Fisher matrix.

For fixed grid, experimental variables such as calibrations and beam uncertainties are internal. In **CosmoMC**, they are explicitly marginalized at the outset.

In simple **forecasting**, all variables are internal, **Fisher-itis**. (Simple forecasts and CosmoMC forecasts agree – mostly BCLP04).

In experimental bandpower determinations using **faster**, **master**, **madcap**, the variables are internal. The likelihood surface is approximated, e.g. offset lognormal form (signal+ noise contributions). Weak "coupling" between bandpowers used.

WMAP1 used a combination of offset lognormal and Gaussian, accurate to a third order expansion. A better fit for low L probability tails has an impact on "anomaly significance" and some on parameters (Slozar etal 04).

MCMC may allow parameter extraction directly without bandpowers (Wandelt etal)

With many primordial bandpowers + target parameters in inflation (e.g. blind searches for radically broken scale invarance), hybrid internal/external approach. (accuracy?)

Concordance (Mar04 CMB + weak prior on h)

MCMC	Jan02	Jun02	Jan03	Mar03	Mar03(899db)
weak					
Ω_{tot}	$1.022 \substack{+ .041 \\041 \\041}$	$1.028 \substack{+ 040 \\- 040 \end{bmatrix}$	$1.037 + 038 \\ - 038 \ - 03$	$1.042^{+.032}_{032$	$1.016^{+.08}_{03}$
Ω_{Λ}	$0.48^{+.18}_{18}$	$0.50^{+.16}_{16}$	$0.52^{+.14}_{14}$	$0.59^{+.11}_{11}$	$0.71^{+.06}_{30}$
h	0.58 ± 0.11	0.56 ± 0.10	0.56 ± 0.11	0.57 ± 0.10	0.61 ± 0.14
age	14.4 ± 1.3	14.8 ± 1.3	14.8 ± 1.2	15.1 ± 1.1	14.8 ± 1.5
Ω_m	0.54 ± 0.19	0.53 ± 0.18	0.52 ± 0.16	0.46 ± 0.14	0.45 ± 0.22

Closed Universes (and open) are possible, and allowing it shifts the values of some parameters

- Breaking the angular-diameter distance strong degeneracy
- via ISW (cosmic variance limited though)
- & other data, here weak h constraint

"Basic" Concordance Model Parameters

• Monte Carlo Markov Chain (MCMC) parameter analysis

• "FLAT CMB only" : WMAP1, WMAP1 + CBI VII, ALL (including Boom98, ACBAR, VSA04)

• CMB by itself shows concordance model (for flat assumption)

 Inclusion of high-L data reduces WMAP1's degeneracies

[CBI VII : Readhead et al. astro-ph/0402359]

CMB: uniform acceleration: wmap1 cf. cbi2+wmap1 cf. jan04+vsa2

Jan04 CMB+"LSS" data Uniform acceleration LCDM models No running index

Jan04 CMB+"LSS" data non-uniform acceleration **LCDM** models running index

CMB jan04: ns-omb correlation wmap1 cf. cbi2+wmap1 cf. jan04+vsa2

Anomalies: Systematics, Statistics, AstroPhysics or Fundamental Physics?

"anomalies" @ low L 2,3; ~20-30; check@200, >600?

ET checkmarks 2, 22, 222, 2222

Issues: L=2,3 how low is the probability? Glitches? non-WMAP data e.g. Acbar/CBI calibration

CBI anomalous power @ L > 2000, Sunyaev Zeldovich effect in the cosmic web is plausible is σ_8 if ~ 0.9 (nonlinear gasdynamics)

Statistical isotropy broken on large scales?

Is there a case for BSI (yet)? weak indication of $[dn_s/dlnk] < 0$ in Jan03 and Mar03, Jan04 CMB data Complicated by high correlations (degeneracies) among cosmic variables, $\sigma_8 - \tau_C - n_s \& dn_s/dlnk$

Optimal spectra in k-space -> BSI? driven by "anomalies" @ low L (20-30, 2,3) & L > 600

finer ΔL look: changing target space helps to reduce

Marginalize over L=2,3,4,21,22,23 bandpowers reduces the running index:

-0.088 +- 0.041 to

-0.062 +- 0.043

Running of the Spectral Index : Parameter Fits

[Tegmark et al. astro-ph/0310723]

[Bond, Contaldi & Pogosyan astro-ph/0310735] [CBI VII, Readhead et al. astro-ph/0402359]

"Generic" predictions of single field slow-roll models vs. WMAP1+ext+ext

Sabino Matarrese slide, Mon Jun 28, 2004

Each point is a "viable" slow-roll model, able to sustain inflation for sufficient *e*-foldings to solve the horizon problem and make the Universe (nearly) flat.

Monte Carlo simulations using (*Kinney 2002*) "flow-equation" i.e. just a power series expansion to 5, 6, 8 order, sample coefficients, reject unviable acceleration histories. Really should have physics priors (none here, so not really generic??).

Sample of string-motivated reflowering of hybrid mutiple field inflation models KKLT, KKLMT, Kallosh etal 04

Potential of the Hvbrid D3/D7 Inflation Model

 $V = S^2 \Phi^{\dagger} \Phi + \frac{g^2}{2} D^2$

 $\vec{D} = \Phi^{\dagger} \vec{\sigma} \Phi - \vec{\xi}$

& more ingredients of Kallosh etal 04. Other examples of the emerging crosstalk of CMB phenomenology: string-motivated Dirac-Born_Infeld modification of the kinetic energy sqrt(1-momentum**2), "DBI in the Sky", Silverstein etal 2004

de Sitter stage - Waterfall - Ground State $\Phi = 0$ $S \gg S_{cr}$ $\vec{D} = \vec{\xi}$ $V = \frac{g^2 \xi^2}{2}$

De Sitter: Inflation or current acceleration

$$\Phi^{\dagger}\vec{\sigma}\Phi = \vec{\xi} \qquad S = 0 \qquad \vec{D} = 0 \qquad V = 0$$

Ground state: D3/D7 bound state

Higgs branch: non-commutative instantons

NS non-commutative instantons:

Higgs branch, bound state of D0/D4

High L frontier: soon 04; CBIpol, ACBAR, boom2K; ... ACT/SPT/QUaD/Quiet,...

High L "anomaly" CBI2+Acbar+BIMA

Cosmic Background Imager

CMB Polarization

CBI fcast /mock 2004 cf. 2005 data

forecast for parameters and 1 and 2 sigma errors for WMAP4yr (green) cf. WMAP4+SPT/ACT-like TT/TE/EE 1000 sq deg expt (red) cf. Planck 1 yr (blue) cf. current Jun03 result (magenta error bars)

PLANCK vs. WMAP4yr + Ground based telescopes

(circa ~ 2008)

• WMAP 4yr

+ Ground-based telescopes pre-Planck ACT/SPT-like (bolometers) ; QUIET (HEMT arrays). Coverage assumed; ~few % of the sky (1000 sq deg); polarization included
•PLANCK (2007+)

Forecasts of precision on 9 "standard model" parameters WMAP4 3/9 to ±0.01, 7/9 to ±0.1 WMAP4+gnd 4/9 to ±0.01, 8/9±0.1 Planck1 2007+ 6/9 to ±0.01, 8/9

MAP & Planck orbit @ L2, the 2nd earth-sun Lagrange point

WMAP4 cf. Planck1

running index models

The SZ & cluster frontier

σ₈ issue will be resolved (soon?) but cluster complexity must be fully addressed for high precision on other parameters to be realized.

combine SZ at varying resolution +
optical + gravitational lens + X-ray
+ embedded source observations

σ₈ from CMB & LSS

LSS prior $\sigma_8 \Omega_m^{0.56}$ approximate eigenmode for weak lensing & cluster abundances & large scale velocities. Broken by higher redshift data

CMB jan04: s8 dilemma wmap1 cf. cbi2yr+wmap1 cf. jan04+vsa2

CMB jan04: running index wmap1 cf. cbi2+wmap1 cf. jan04+vsa2

High L "anomaly" CBI2+Acbar+BIMA

2dFRS (analysis on 147K galaxies Percival etal. 2001)

SDSS

Red-sequence Cluster Survey (RCS):

□ Data taken with CFHT and CTIO.

□ 53 square degrees analyzed.

 \Box Measured > 2x10⁶ galaxy shapes down to R=24.

VIRMOS-DESCART:

Data taken with CFHT
 11 square degrees analyzed
 Measured > 8x10⁵ galaxy shapes down to I_{AB}=24.5

Deep Lens Survey □ CFHT Legacy Survey □ RCS2

28 square degrees (ongoing)140 square degrees (ongoing)1000 square degrees (ongoing)

□ LSST □ Pan-STARRS □ SNAP (space)

> 10⁴ square degrees (>2008)
> 10⁴ square degrees (>2012)
few 100 square degrees (>2011)

weak lensing breaks some CMB partial degeneracies

Contaldi, Hoekstra & Lewis (2003)

weak lensing breaks some CMB partial degeneracies

van Waerbeke, Mellier & Hoekstra (2004) ViRMOS-DESCARTES data

Forecast for wk lens surveys: CFHTLS & JDEM satellite

Tereno, van Waerbeke etal 2004

 σ_{θ}

The Cluster System also can get parameters; e.g optical, SZ

From Levine, Shultz, & White, 2002, ApJ, 577, 569

e.g. RCS2, following RCS1 Gladders, Yee etal

~1000 square degrees

Will find ~30 000 clusters to z = 1, and measure N(M, z)

Put strong constraints on Ω_m and w- if "richness" – mass relation can be well-calibrated

SPT 8m, 1.25' @ 150 cf. ACT 6m , 1.5' ?

John Ruhl's talk

Sample forecast for SZ cluster surveys

Compact universes ?

Ultra large scale structure & cosmic topology: size constraints. Cannot be too small, too large you cannot tell, may be just so. Priors?

e.g. Toroidal universe (one small dimension)

or, ...,

a Poincare dodecahedron "Soccer ball cosmos" ©

See talks by Dmitry Pogosyan & Tarun Souradeep

