Is dark energy dynamic?

Martin Kunz University of Sussex, Brighton

& B.A. Bassett, E.J. Copeland, P.S. Corasaniti, D. Parkinson, J. Silk and C. Ungarelli

outline

- Why dark energy?
- What is it?
- Can we say anything about its nature?
- Conclusions

why dark energy?

Why do we want to consider something with negative pressure? Ever seen such a thing?! (apart from British showers...)

Count the energy density in the universe:

- radiation: CMB-temp $\Rightarrow \Omega_{\gamma} \approx 5 \times 10^{-5}$
- matter: LSS $\Rightarrow \Omega_m \approx 0.3$

Do we live in a low density universe? SN-Ia: rather not CMB anisotropies: NO!

- cosmological const.: $\Rightarrow \Omega_A \approx 0.7$

what is it?

the essence of quintessence

We impose an equation of state w(z) which captures the essential features of quintessence and derive an effective potential.

typical expectations:

- recent acceleration
 ⇒ w₀ < -1/3
- avoid fine tuning the initial energy density
 ⇒ w_m > -1/3
- there is a transition at a given redshift z_t with a given width Δ .
- Λ corresponds to $w_0 = -1$ and either $w_m = -1$ or $z_+ \gg 1$.

outline of the analysis

General strategy:

- compute predictions for many models with different parameters (we vary H_0 , Ω_Q , Ω_b ,, n_s , τ and the normalisation as well as a_t , w_0 , w_m , Δ)
- compare with data sets (we use WMAP + SN-Ia)
- derive constraints on the parameters (Markov-Chain Monte Carlo code with modified cmbfast)
- draw conclusions about the physical nature of whatever it was that created the data

influence of w(z) on the CMB

rapid transition :

- late onset of expansion changes ISW effect which acts at large l
- peak lower after COBE normalisation

- Cosmic variance makes the effect hard to observe, especially for models with slowly varying equation of state.
- A data set which connects large and small angular scales is crucial for a correct normalisation \leftarrow WMAP.

cosmological parameters

- limits slightly wider, but no clear difference
- no new degeneracies!
 (except maybe τ)
 - $\begin{array}{ll} \Omega_m & = 0.29 \pm 0.04 \\ \Omega_b \ h^2 & = 0.0240 \pm 0.0015 \\ H_0 & = 68 \pm 3 \end{array}$
 - n_{S} = 1.01 ± 0.04
 - $\tau \qquad = 0.19 \pm 0.07$

dark energy parameters

w₀ < -0.80 at 95% CL z_t > 0.6 (fast transitions)

best-fit quintessence model:

- $\cdot w_0 = -1$
- $w_m = -0.13$
- a_t = 0.5 (z_t = 1)
- effective $\chi^2 = 1603$

best
$$\Lambda CDM : \chi^2 = 1606$$

dark energy parameters

time behaviour of the DE

- really strong constraints on w only for z < 0.2
- w < 0 for z < 5 (matter e.o.s. / tracking)
 this might spell trouble for exponential potentials...
- dark energy becomes quickly subdominant in the past

the clustering behaviour

- the ISW changes the overall normalisation
- this in turn changes the normalisation of the matter P(k)
- we can detect this if we know the amplitude of P(k) or σ_8
- BUT: we can only observe galaxies
- \Im we don't know σ_8 very well!

conclusions

- no strong change in w for z < 0.5
- eq of state today: $w_0 < -0.80$
- the clustering is different from ΛCDM (can mimic running n_s or massive ν)
- but: no need for anything beyond Λ !

