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Detection of primordial gravitational
waves by CMB

In inflationary scenario, the amplitude of temperature anisotropies produced by
tensor perturbations (gravitational waves) is directly related to energy of inflation
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and in terms of r = Q%/Q% (Qs ~ 18uK)

E; ~ 3 x 10 r1/4 GeV

e Unless r > 0.1, temperature anisotropies can provide only upper limits on r

(from WMAP r < 0.71)

e CMB B—mode polarization is generated only by tensor perturbations



The CMB B—mode power spectrum

e ('py peaks at the angular scale corresponding

to the horizon at recombination, £,cq; >~ 90
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e The amplitude is related to the energy scale

of inflation
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e Cpy peaks at £ < 20 due to reionization



Problems for detecting polarization induced by gravitational waves

— Cosmological B-mode polarization is very weak (in very optimistic cases,
Bims ~ 0.1 uK)

—> Effects mixing CMB E- and B-modes

— Foregrounds contamination:
e high degree of polarization compared to CMB

e no difference between E— and B-mode

Galactic foregrounds: Synchrotron and Dust emission

Extragalactic foregrounds: Radio sources and lensing—induced polarization




B,.. (1K)

0.01

CMB and foregrounds B,

]

TN TI




CMB: 7 = 0.01, 0.1, 0.17 and » = 0.1 (solid lines);
7= 0.1 and » = 0.01, 0.001 (dotted lines).

Synchrotron: 10%-30% of the WMAP AT /T;ns (dotted lines);
1.4-GHz polarization data (Brouwn&Spoelstra 1976) (dashed line);

from high-resolution low—latitude polarization surveys (1.4-2.7GHz;
Duncan et al. 1997, 1999, Uyaniker et al. 1999) (solid line);

from observations of high-latitude polarization (Effelsberg Telescope 1.4GHz;
Abidin et al. 2003) (long—dashed line).

Dust: 5% of the WMAP AT /T,ns (dashed line);
5% of the “100um-—map” AT/Tns (Finkbeiner et al. 1999) (dotted line);
from the dust polarized emission model by Prunet et al. (1998) (solid line).

Radio sources: estimates of Tucci et al. (2004), removing all the sources
with § > 1 or 0.2 Jy.



Galactic foregrounds subtraction

Free—noise data at the “observational” frequency v,
A foreground template is available at frequency v; (free—noise)

The frequency spectrum can be approximated by a power law:

B(n) known with uncertainty AS(i)

—> Galactic foreground removed by a linear subtraction



Residual Galactic foreground at the “observational” frequency v,:
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Residual polarization AQ(f1) ~ In(vs/v,)Q(R)AB (1)

AU (D) ~ In(vy /v,)U () AB(1)



B-mode power spectrum of residual Galactic foreground
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C'pe: Galactic foreground spectrum computed from the template and scaled to the

observational frequency

Cf . power spectrum of spectral index error ApS:

(1) extrapolation by f(fi) =< > =— Ap map shows structures like total-intensity

template
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(2) ApB(nr) like a white noise

C f = constant

CEB normalization — chg =, ,(20+ 1)C’fWg/47r = (0.2)?




Power spectrum of residual (alactic foreground
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1B synchrotron (100GHz) - 1 dust (100GHz)
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Synchrotron Cpgy =1.22 x 1072¢71-8
Dust Cpgy = 4.43 x 1073 ¢~14

Radio Sources Cpy = 1.84 x 1077 (S, = 200 mJy)




Uncertainty on r in a free—noise experiment

Fisher matrix estimates the minimum possible variance with which a parameter

can be measured.

For a CMB polarization experiment, Fisher matrix is given by:
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where AC?M = (26_‘_12)]08@ (Cxe + NX£)2 (X =FE, B)

Nx; = C%,+ extragalactic foregrounds

Minimum possible variance da; = [F;; ']*/?



e parameters: a;—192 = {7,7}

(results for optical depth 7 = 0.1)

e Reference experiment:
— full-sky (with Galactic—Plane cut)
— observational frequency v, = 100 GHz
— template frequency: v, = 70 GHz (synchrotron), v, = 150 GHz (dust)
— resolution FWHM= 1°

® rim — =L =0.3



Constraints on r by (alactic foregrounds
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Galactic foregrounds and Extragalactic Radio Sources
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All the pixels with sources with S > 200 mJy are masked (~ 10% of 1°—pixels)

Tlim = 10_4




Galactic foregrounds and gravitational lensing

In order to remove polarization induced by gravitational lensing, high-resolution
data are required (e.g., Hu & Okamoto 2002; Seljak & Hirata 2003).

e Low-resolution experiment, no subtraction of lensing—induced polarization

e Low-resolution experiment, subtraction using information from other

experiments

e High-resolution experiment (over partial sky, i.e. 30° x 30°)
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Limits on r including all components

Reference experiment

e residual Galactic foregrounds

e radio sources with S < S, =200 mJy
1ens1ng/10

"im =~ 2 x 107% (independently of CB)

Ar/r

Low-resolution (FWHM= 7°)

Tlim ™ 10_3

High-resolution, Area= 30° x 30°
° Cf o 473 riim always worse

o Cf =const;:
riim = 2 X 10™* if no lensing and S, = 25 mJy




Conclusions

We have investigated the limits that foregrounds impose on the detectability
of CMB B-mode polarization. Free—noise experiments are considered.

The next step will be to take into account real experiments (in progress).
With Planck experiment r < 0.08 at the 2—o level (for WMAP r < 0.7)

e Multifrequency observations allow us to remove efficiently Galactic
foregrounds. Spectral information pixel by pixel permits a much better
foreground subtraction, expecially at large scales.

e Extragalactic foregrounds require high-resolution data for an accurate
removal. They strongly constrain the detection of CMB B-—mode polarization:

riim ~ 107* if extragalactic foregrounds are partially subtracted
(S. = 200mJy, Cie"* /10).

e High-resolution small-area experiments give weaker limits on r

respect to full-sky experiments

e r5;m < 107% are possible if radio sources with S < 200mJy are subtracted
(not masked) directly in polarization maps (work in progress).




