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Introduction & Developments

• Light bundles are distorted as they

propagate through the Universe

• their distortion carries information

about the LSS

• Cosmic Shear exploits this informa-

tion by measuring image shapes of

many distant objects

Cosmic Shear deals with the investigation of the connection

between matter distribution and image shapes, from the measure-

ment of the correlated image distortion to the inference of cosmo-

logical information from this distortion field.



Towards cosmic shear detection

• Zel’dovich (1964); Gunn (1967): light propagation in inhomogeneous Universe

• Blandford et al. (1991); Miralda-Escudé (1991); Kaiser (1992): basic theory of

cosmic shear; relation to power spectrum

• Mould et al. (1994); Fort et al. (1996); Schneider et al. (1998): attempts to

detect a cosmic shear signal

• Bernardeau et al. (1997); Jain & Seljak (1997): higher-order shear effects;

accounting for non-linear power spectrum of the LSS

• Kaiser (1998); Schneider et al. (1998): new shear measures

• Bacon et al. (2000); Kaiser et al. (2000); van Waerbeke et al. (2000); Wittman

et al. (2000): first detection of cosmic shear with ∼ 105 galaxies



• First results from 4 different groups,

3 cameras/telescopes agreed within

their (fairly large) error bars

• soon larger surveys became avail-

able, from the ground (e.g., Virmos-

Descart, RCS, COMBO-17, Ga-

BoDS, CFHTLS) and also from space

(WFPC2, STIS, ACS, COSMOS)

• E.g., all groups agree that they can measure

σ8 within ∼ 10% accuracy

• though they don’t agree 10% of what

• Current state-of-the-art: well, follow this

week’s program!



Lensing measures projected mass distribution

Lensing effect of the 3-D matter distribution (the LSS) on source at distance χ is

described by effective surface mass density κ(θ, χ),

κ(θ, χ) =
3H2

0Ωm

2c2

∫ χ

0

dχ′
(χ− χ′) χ′

χ

δ (χ′θ, χ′)

a(χ′)
; (1)

a spatially flat Universe was assumed; a(χ) = (1 + z)−1: scale factor;

χ: comoving distance; δ(x, χ) = ∆ρ/ρ̄: density contrast.

The cosmological model enters in two different ways:

• Properties of the mass distribution δ(x, z); depend on growth factor, transfer

function, and non-linear evolution;

• Geometrical factors, (χ − χ′)/χ (= “Dds/Ds” in standard lensing notation),

depend on distance-redshift relation, hence on expansion history.

Both effects can be probed, jointly or separately.



Select a set of galaxies with redshift distribution pz(z) dz = pχ(χ) dχ in the survey,

and define geometric weight factor

g(χ) =

∫ χh

χ

dχ′ pχ(χ′)
(χ′ − χ)

χ′
=

〈
Dds

Ds

〉
.

Effective κ for this redshift distribution:

κ(θ) =
3H2

0Ωm

2c2

∫ χh

0

dχ g(χ) χ
δ (χθ, χ)

a(χ)
,

Then use Limber’s equation to get power spec-

trum

Pκ(`) =
9H4

0Ω2
m

4c4

∫ χh

0

dχ
g2(χ)

a2(χ)
Pδ

(
`

χ
, χ

)
.

This assumes that δ does not change much on

the timescale which a photon needs to traverse

the largest-scale structures in the Universe – sim-

ulations support this assumption.

Cosmic shear in combination

with other cosmic probes is very

powerful to constain cosmologi-

cal parameter (Hu & Tegmark

1999)



Use color information to select different redshift distributions of sources, i.e.,

g(i)(χ) =

∫ χh

χ

dχ′ p(i)
χ (χ′)

(χ′ − χ)

χ′
. (2)

Then, cross-power is

P ij
κ (`) =

9H4
0Ω2

m

4c4

∫ χh

0

dχ
g(i)(χ)g(j)(χ)

a2(χ)
Pδ

(
`

χ
, χ

)
. (3)

Different redshift distributions not only useful for increasing cosmological power of

cosmic shear, but also absolutely necessary to control systematics.



Observables and estimates

Observables

Image ellipticities εi, defined in terms of second brightness moments;

related to intrinsic ellipticity εs
i by

εi =
εs
i + g

1 + εs
ig
∗ ≈ εs

i + γ(θi) ; (4)

γ: shear = projected tidal gravitational field,

γ̂(`) = κ̂(`) exp [2i phase(`)] . (5)

As galaxies have random orientation intrinsically, one finds for the expectation value

of image ellipticity

〈εi〉 = g(θi) ≡
γ(θi)

1− κ(θi)
≈ γ(θi) : (6)

⇒ every image ellipticity is unbiased (though noisy) estimate of (reduced)

shear along a line-of-sight.



In the real world ...

the observed ellipticities are affected by various effects:

• seeing, PSF anisotropy, caused by atmospheric turbu-

lence, tracking errors, field distortions (coaddition);

• pixelization, noise, blending, bad pixels, cosmics;

• diffraction spikes, ghosts, fringing, ...

These effects need to be controlled (the PSF is observable

through the images of stars) and corrected; effective

methods for this are available.

The community has made major STEPs to study these

issues,

we believe we can measure shears with ∼ 2% accuracy by

now, with further improvements to come.



In the real world ...

the observed ellipticities are affected by various effects:

• seeing, PSF anisotropy, caused by atmospheric turbu-

lence, tracking errors, field distortions (coaddition);

• pixelization, noise, blending, bad pixels, cosmics;

• diffraction spikes, ghosts, fringing, ...

These effects need to be controlled (the PSF is observ-

able through the images of stars) and corrected; effective

methods for this are available.

The community has made major STEPs to study these

issues,

we believe we can measure shears with ∼ 2% accuracy

by now, with further improvements to come; THUS:



Estimates

All second-order statistical information is contained in shear 2-point correlation

functions (2PCF) ξ±(θ),

ξ±(θ) = 〈γtγt〉 (θ)± 〈γ×γ×〉 (θ) , ξ×(θ) = 〈γtγ×〉 (θ) . (7)

ξ×(θ) should vanish due to parity symmetry!

Unbiased (in absence of intrinsic effects) estimator of 2PCF in a θ-bin

ξ̂±(ϑ) =

∑
ij wi wj (εitεjt ± εi×εj×) ∆ϑ(|θi − θj|)

Np(ϑ)
, (8)

Np(ϑ) =
∑
ij

wi wj ∆ϑ(|θi − θj|) ; (9)

The wi are weight factors of the i-th galaxy ellipticity, ∆ϑ defines an angular bin.

Np(ϑ): effective number of pairs in the bin.

All other 2-point statistical shear statistics can be derived from ξ±.

ξ± is the prime observable, insensitive to gaps in data



Relation of shear 2PCF to power spectrum

ξ±(θ) =

∫ ∞

0

d` `

2π
J0,4(`θ) Pκ(`) .

Parameter estimate

Shear 2PCF can be directly compared with cosmological predictions:

χ2(p) =
∑
ij

[
ξobs
± (θi)− ξ±(θi; p)

]
C−1
± (θi, θj)

[
ξobs
± (θj)− ξ±(θj; p)

]
C±(θi, θj) is the covariance matrix of the shear 2PCF, given as

C±(θi, θj) =
1

πω

∫ ∞

0

d` ` J0,4(`θ1)J0,4(`θ2)

[(
Pδ(`) +

σ2
ε

2n

)2

±
(

σ2
ε

2n

)2
]

(Joachimi & Schneider, in prep.), where ω is solid angle of the survey, n is number

density of galaxies, and the J’s are Bessel functions.

Equivalent to covariance of Schneider et al. (2002), but much simpler.

Then minimize χ2 w.r.t. cosmological parameters: done!



Left: Covariance C++ (thick curves) and C−− (thin curves).

Right: Mixed covariance C+− (Joachimi & Schneider, in prep.)



Successes

Since 2000, great progress has been made:

• Lensing surveys have extended greatly in size.

• Shear measurements have been much better understood

(KSB, Jarvis & Bernstein, shapelets, ... ⇐ STEP).

• New diagnostics for data integrity have been developed and applied

(E/B-modes; parity invariance; star-galaxy shape correlations, etc.).

• Currently, systematic uncertainties believed to be smaller than statistical ones

(will change soon).

• Cosmic shear turned into a cosmological tool.



Example; CFHTLS

Semboloni et al. 2005 Hoekstra et al. 2005



Example: CTIO survey (Jarvis et al. 2005)

here, w ≡ −1



w left as free parameter:



Example: GaBoDS (Hetterscheidt et al. 2007)

Constraints obtained with two different

cosmic shear statistics

small contours:

result from WMAP



The notorious

E mode

B mode
ProblemE-/B-mode

E-mode shear is believed to come from lensing;

B-mode shear is not expected from lensing (except for some higher-order corrections,

such as lens-lens coupling, Born-approximation, source clustering, etc.)

γ̂E,B(`) =
1

2

[
γ̂(`)± γ̂∗(−`) e4i phase(`)

]
, ` = 0 mode undetermined

Strategy: separate both modes; check whether (and be happy if) the B-modes

vanish.

Three such separation methods are used at the second-order level: E/B-mode power

spectra, E/B-mode correlation functions, and aperture statistics.



E/B-mode power spectra

E mode

B mode

PE/B(`) = π

∫ ∞⇐

0

dθ θ [ξ+(θ)J0(`θ)± ξ−(θ)J4(`θ)]

in this form, requires ξ’s to infinite separation

There are better ways of determining the power spectrum (e.g., Kaiser 1998; Hu &

White 2001) or band powers.

E/B-mode correlation functions

ξE/B(θ) =
1

2

[
ξ+(θ)± ξ−(θ)± 4

∫ ∞⇐

θ

dϑ

ϑ
ξ−(ϑ)∓ 12θ2

∫ ∞⇐

θ

dϑ

ϑ3
ξ−(ϑ)

]
.

Same problem; can be fixed by fitting two constants C1,3 =
∫∞

θmax
dϑ ϑ−1,3 ξ−(ϑ)

such that B-mode shear vanishes on largest scale (Crittenden et al. 2002).

But then throws away information on large scales.



E/B-mode separation in aperture statistics

Consider circular aperture of radius θ; for a point inside the aperture, define tan-

gential and cross-components of the shear relative to center of aperture; define

Map(θ) =

∫
d2ϑ Q(|ϑ|) γt(ϑ) ,

with Q: a weight function with support ϑ ∈ [0, θ]; e.g.,

Q(ϑ) =
6

πθ2

ϑ2

θ2

(
1− ϑ2

θ2

)
H(θ − ϑ) .

First advantage:
〈
Mn

ap(θ)
〉

is sensitive only to E-mode shear, for all n.

Dispersion of Map(θ) is related to power spetrum as〈
M 2

ap

〉
(θ) =

1

2π

∫ ∞

0

d` ` Pκ(`) W (θ`) , with W (η) :=
576J2

4(η)

η4
.

Second advantage:
〈
M 2

ap(θ)
〉

is local measure of power spectrum



Similarly, one defines cross-aperture

M⊥(θ) =

∫
d2ϑ Q(|ϑ|) γ×(ϑ) ,

〈Mn
⊥(θ)〉 is sensitive only to B-mode shear, for all n.

Aperture mass dispersion in terms of 2PCF〈
M 2

ap

〉
(θ) =

1

2

∫ 2θ⇐

0⇐

dϑ ϑ

θ2
[ξ+(ϑ) T+(ϑ/θ) + ξ−(ϑ) T−(ϑ/θ)] ,

〈
M 2
⊥
〉

(θ) =
1

2

∫ 2θ⇐

0⇐

dϑ ϑ

θ2
[ξ+(ϑ) T+(ϑ/θ)− ξ−(ϑ) T−(ϑ/θ)] ,

with T± being know functions.

No need to place apertures on the field.

Third advantage: aperture dispersion can be derived in

terms of the measured shear correlation functions over a

finite separation interval.



Fourth advantage: The covari-

ance of
〈
M 2

ap(θ)
〉

is simple, at

least under Gaussian assump-

tions

in particular, it decorrelates

quickly away from the diagonal

see Kilbinger & Schneider (2005)

and Semboloni et al. (2007)

for modification due to non-

Gaussianity, important for angu-

lar scales <∼ 20′.

XXXJoachimi & Schneider, in prep.

CovM2
ap

(θ1, θ2) =
5762

πω

∫ ∞

0

d`

`7

J2
4(`θ1)

θ4
1

J2
4(`θ2)

θ4
2

(
Pδ(`) +

σ2
ε

2n

)2



Fifth advantage:Aperture statistics can be easily generalized to higher order

e.g.,
〈
Mn

ap(θ)M 3−n
⊥ (θ)

〉
can be calculated in terms of the shear 3PCFs Γ.

Then:

•
〈
M 3

ap(θ)
〉

is linearly related to bispectrum of LSS

•
〈
Map(θ)M 2

⊥(θ)
〉

contains a B-mode signal

•
〈
M 2

ap(θ)M⊥(θ)
〉

and
〈
M 3
⊥(θ)

〉
must be strictly zero, in order not to violate

parity invariance!

These aperture measures can also be generalized to three different filter radii; in

this way they probe all triangle configurations of the bispectrum.

〈Map(θ1) Map(θ2) Map(θ3)〉 ≡
〈
M 3

ap

〉
(θ1, θ2, θ3) =

∫
Kernel × Γ ,

where the Kernel is a known function (Jarvis et al. 2004; Schneider et al. 2005)〈
M 3

ap

〉
(θ1, θ2, θ3) simply related to bispectrum.



2nd-order cosmic shear: the problems

Problems can be broadly catagorized as follows:

• Observational effects: unbiased shape estimates

• Redshift information

• Intrinsic alignments and shape-shear correlations

• Theoretical predictions

– uncertainties in the lensing predictions

– uncertainties in cosmological predictions

All of them have to be solved very accurately to render future cosmic shear surveys

a precision tool for cosmology.



Intrinsic alignment; shape–shear correlations

Let εi = εs
i + γ(θi), z1 ≤ z2:

〈ε1ε
∗
2〉 = 〈εs

1ε
s∗
2 〉 : intrinsic, = 0 unless z1 ≈ z2

+ 〈εs
1γ

∗
2〉 : unfortunately, 6= 0 (Mandelbaum et al. 2006)

+ 〈γ1ε
s∗
2 〉 : ≡ 0

+ 〈γ1γ
∗
2〉 : WANTED! = ξ+(|θ1 − θ2|)

Intrinsic correlations can be eliminated with phot-z, by avoiding pairs of similar

redshift or used their localization in ∆z explicitly (King & Schneider 2002, 2003;

Heymans & Heavens 2003);

however, requires accurate photometric redshift estimates;

relative effect stronger for shallower cosmic shear surveys.



Shape-shear correlations (Hirata & Seljak 2004)
Ellipticity of light is affected by

tidal field of environment;

can be identified through their

characteristic redshift depen-

dence ∝ (χ2 − χ1)/χ2 and fil-

tered out.

z=0.2 z=0.2

z=0.2

z=1

If redshift information is available, shape-shear correlation can be eliminated:

if ξ±(θ; z1, z2) is z-dependent shear 2PCF,

then

Ξ±(θ; z1) =

∫ ∞

z1

dz ξ±(θ; z1, z) B(z; z1)

no longer contains shape-shear correla-

tions if
∫∞

z1
dz B(z; z1) (Dds/Ds) = 0.

Both of these effects discovered – need to be controlled ⇒ z info!

Relative strength of both effects larger for shallow surveys.



Theoretical uncertainties I

Usual lens treatment makes number of approximations:

• Born approximation: light lays propagate along straight lines

• Neglect of lens-lens coupling: lens effect linear in gravitational potential

• flat-sky approximation: cos θ = 1

• Limber’s equation: slow evolution of all quantities, and neglect of very large-

scale modes

• Lens-source coupling: dense regions (where high shear is created) are populated

with overdensity of galaxies – those are unaffected by the shear.

Consequence: 〈Map〉 < 0, and dispersion affected as well

(Hamana et al. 2004; Kilbinger et al. in prep.)

can be avoided by using redshift information.



Theoretical uncertainties II

• The power spectrum Pδ(k) not sufficiently well known; fit formulae (e.g., Pea-

cock & Dodds 1996; Smith et al. 2003) not accurate enough for precision cos-

mology;

NOTE: Almost all current cosmic shear measurements extend into the non-

linear regime.

• Higher-order spectra (bispectrum, trispectrum) analytically unknown – strongly

affects the use of higher-order shear statistics.

• Trispectrum needs to be determined in order to get reliable covariance matrix

for 2-nd-order shear – Gaussian approximation grossly underestimates covari-

ance on scales below ∼ 15′.

• Masking bias: Noone will measure cosmic shear in the inner ∼ 1′ of A1689,

though it is contained in the power spectrum.

• Baryon cooling will affect the power spectrum on small scales.



Accuracy with which the power spectrum needs to be known (in the worst case) in

order for systematics to be smaller than statistical (sampling variance) errors

from Huterer & Takada (2004)



Theoretical uncertainties III: Implications

• Ray-tracing though large LSS simulations must be an essential part of any

future cosmic shear effort – both for the lensing part (Born appr.; lens-lens

coupling; flat-sky; Limber) as well as for power-, bi-, and trispectra, covariances.

• They must be supplemented by hydro-simulations to study effects of baryons

on small scales.

• Observational biases (masking of central parts of clusters; lens-source coupling)

can be simulated by adding (semi-analytic) galaxy evolution models.



The third dimension

• z-dependent cosmic shear signal, i.e., ξ±(θ; z1, z2);

• yields much better accuracy for cosmological parameters;

• 2 or 3 or 5 redshift bins? Many more! For control of systematics!

• 3-D lensing occurs in many different forms: shear tomography, shear ratio test,

3-D mass reconstruction, etc.

• z-dependent cosmic shear already observed in several surveys; e.g., shows

growth of the power spectrum (Bacon et al. 2006).

• Essential feature for self-calibration.



One version of tomography

Constraints from shear measurements can be obtained independent on knowledge

of mass distribution:

Let P12(`) be cross-power spectrum between two populations of galaxies 1, 2, with-

out redshift overlap;

P can be either shear-shear or galaxy-shear power spectrum;

using 3 background populations 2, 2′, 2′′, the ratio

P12 − P12′

P12 − P12′′
=
〈1/χ2〉 − 〈1/χ2′〉
〈1/χ2〉 − 〈1/χ2′′〉

is independent of matter power spectrum – a purely geometrical test (Zhang et al.

2006);

best used in combination with ‘traditional’ method, particularly at small scales.



Higher-order shear IS useful

Higher-order shear statistics

yield very valuable informa-

tion;

here (Takada & Jain 2004)

in combination with redshift

slicing (just two z-bins)

simplified expressions for co-

variance matrices – ‘Gaus-

sian’;

most current Figure-of-merit

estimates use only 2nd-order

shear statistics

⇒ thus underestimate the

power of cosmic shear.



Beyond 3rd order?

• Since cosmic shear field is non-Gaussian, we don’t know how to best characterize

it.

• 2PCF + 3PCF do not contain full information. Going to 4PCF? Shear peak

statistics (counting peaks of Map(ϑ; θ))?

• Higher-order shear for self-calibration, e.g.,

4PCF = F(2PCF, 3PCF) ?

• Higher-order test for data integrity, such as parity invariance of the observed

shear field,
〈
Mm

apM
n
⊥
〉
≡ 0 for n odd.



Towards Dark Energy

Cosmic shear is seen as most promising method to constrain the e.o.s. of DE

(Dark Energy Task Force; ESA-ESO WG on Fundamental Cosmology)

Power spectra for different cos-

mological models and different

redshift distributions of sources;

error boxes correspond to antici-

pated SNAP wide survey

(from Refregier et al. 2004)

However, we need to get system-

atics under control – and this re-

quires reliable photometric red-

shifts and shear calibration.



Degradation of accuracy in determination of w and wa from SNAP, depending on

knowledge of shear calibration (left) and mean redshift in phot-z redshift slices

(right) – combining 2nd- and 3rd-order statistics very useful: self-calibration

from Huterer et al. (2005)



There’s more than shearing galaxies

• Shearing the CMB

• Shearing the (pre-)reionization 21 cm radiation (e.g., SKA)

• Flexion galaxies (arclets)



Implications

In order to turn cosmic shear into a tool for precision cosmology, we need

• an imaging survey across a major fraction of the sky,

⇒ telescope/camera(s) with large throughput

• with well behaved imaging properties (stable PSF),

⇒ excellent site, or better: space

• with reliable and well-calibrated photo-z’s,

⇒ multi-color data needed,

⇒ major spectroscopic effort required

• with an appreciable depth, both for large n and for independent redshift bins,

⇒ implications for exposure time,

⇒ NIR-photometry needed, which can only be done from space.

• Reliable theoretical predictions

⇒ major ray-tracing-through-simulated-density-field efforts required.


