$3D Ly\alpha$ radiation transfer

Constraints on gas and stellar properties of $z \sim 3$ Lyman break galaxies(LBG) and implications for high-z LBGs and Ly α emitters

ABSTRACT

The aim of our study is to understand the variety of observed $Ly\alpha$ line profiles and strengths in Lyman Break Galaxies (LBGs) and Ly α emitters (LAEs), the physical parameters governing them, and hence derive constraints on the gas and dust content and stellar populations of these objects.

Using our 3D Ly α radiation transfer code, MCLya (Verhamme et al. 2006), we fit the Ly α profiles of 12 LBGs at $z \sim 3$, with a simple geometry of a spherically expanding shell of H I.

The main results are presented hereafter (Verhamme et al. 2008, A&A accepted).

MOTIVATION AND MODEL

- what leads to the variety of $Ly\alpha$ profiles observed in LBGs, ranging from strong, asymmetric emission, to broad absorption, or rare double-peaked profiles, whereas they are all starburst galaxies, with a predicted strong Ly α emission?
- observed correlations between $EW(Ly\alpha)$ and other observables (E(B-V), SFR UV...) are not well understood yet.
- A systematic detection of outflows is reported in the ISM of LBGs, with a velocity shift between the interstellar absorption lines and $Ly\alpha$ 3 times higher than the shift between the interstellar absorption lines and the stellar lines, as we predicted for a peculiar geometry of an expanding shell of neutral gas surrounding a Ly α source (Verhamme et al. 2006).

\Rightarrow LBGs modelled by spherical H I shells surrounding a starburst

LBGS AND LAES : TWO DISTINCT POPULATIONS ?

CORRELATION f_e vs E(B-V)

 (\mathbf{L})

- The main parameter determining $Ly\alpha$ escape fraction in the dust extinction in the gas; even static media follow this trend !
- We propose a fit to predict the escape fraction of $Ly\alpha$ photons knowing the dust extinction (dashed curve):

- When we apply the same selection criteria to a sample of LBGs and LAEs, the EW(Ly α) distributions are identical (cf left panel): LAEs above a certain magnitude are the same population as LBGs with $Ly\alpha$ emission.
- anti-correlation between SFR(UV) and EW(Ly α) in the right panel explained by radiation transfer effects : assuming that the galaxy mass, and so the dust content increases with SFR(UV), we showed that the Lya escape fraction decreases with extinction.
- We conclude that LBGs and LAEs are two overlapping populations with a sequence mostly driven by mass

 $f_e = 10^{-7.71 \times E(B-V)^{gas}}$

• Adopting reasonable values for EW_{int} (Schaerer, 2003), this formula may be used to obtain a crude estimate of the extinction in LAEs based on a pure equivalent width measurement:

$$\log\left(\frac{\mathrm{EW}_{\mathrm{obs}}^{\mathrm{rest}}}{\mathrm{EW}_{\mathrm{int}}}\right) = -E(B-V)^{\mathrm{gas}}\left(7.71 - 0.4k_{\lambda}r\right)$$
$$\approx -5.6 \ E(B-V)^{\mathrm{gas}} \tag{2}$$

where $k(\lambda = 1216 \text{\AA}) \approx 12$ and $r = E(B-V)^*/E(B-V)^{\text{gas}} = 0.44$ according to Calzetti (2001). An extinction corrected SFR(Ly α) value can then be obtained from the Ly α luminosity using an appropriate SFR calibration, consistent with the assumed value of EW_{int} .

(MAIN RESULTS (Verhamme et al. 2008)

- variety of profiles reproduced by a single model of an *expanding shell* surrounding a starburst
- no need to invoque IGM attenuation to reproduce the profiles, even at $z \sim 5$: alteration by ISM kinematics and geometry only
- ISM velocity well constrained : double-peaked profiles = static medium, asymmetric emission = outflow
- ALL intrinsic spectra in emission \Rightarrow Radiation Transfer in a dense and dusty medium leads to the observed absorption in cb58, which reconciles UV/Ly α SFH diagnostics.

• unified senario for LBGs and LAEs