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Massive black holes?
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Evolution of the black hole mass function as
reconstructed from accretion history
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We know the DM power spectrum very well!
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Bullock et al.

DM haloes grow by merging
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Typical merging history in a bright elliptical
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Does the hierarchical
growth start with a
minimum seed mass?
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Black holes as massive as the most
massive black holes today have
already formed at z=6.4.

Estimated mass: 3 x 10° Msol

Fan et al.
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Sufficiently massive haloes do exist at z=6.
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Black holes as massive as the most
massive black holes today have
already formed at z=6.4.

Estimated mass: 3 x 10° Msol

Fan et al.

Age of Universe at z=6.4: 0.8-0.9 Gyr

— For Eddington limited accretion only 20 ¢, i
e-foldings possible!
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Growth from stellar mass seeds requires

Eddington-limited accretion with duty cycle close to one
and
efficient growth 1n shallow potential wells
and
(“fine tuning” of space density of stellar mass black hole
seeds to avoid excessive ejection by black hole recoils
in hierarchically merging proto-galaxies)

or

super-Eddington accretion
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We most probably need massive seed black holes.

How do massive seed black holes form?
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Direct collapse into a compact massive self-gravitating disc

H, coohng. <+—» | fragmentation
metal cooling

haloes with T, .= 10000K
with no metals (and H, supression)
are least prone to fragmentation
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FORMATION OF THE FIRST SUPERMASSIVE BLACK HOLES

VoLker BRoMM' AND ABraHAM Logs'??
Received 2002 December I18; accepted 2003 June 16

ABSTRACT

We consider the physical conditions under which supermassive black holes could have formed inside the
first galaxies. Our smoothed particle hydrodynamics simulations indicate that metal-free galaxies with a
virial temperature of ~10* K and suppressed H, formation (due to an intergalactic UV background) tend to
form a binary black hole system that contains a substantial fraction (2 10%) of the total baryonic mass of the
host galaxy. Fragmentation into stars is suppressed without substantial H; cooling. Our simulations follow
the condensation of ~5 x 108 M, around the two centers of the binary down to a scale of £0.1 pc. Low-spin
galaxies form a single black hole instead. These early black holes lead to quasar activity before the epoch of
reionization. Primordial black hole binaries lead to gravitational radiation emission at redshifts z = 10 that
would be detectable by Laser Interferometer Space Antenna.

Subject headings: black hole physics — cosmology: theory — galaxies: formation — hydrodynamics
quasars: general
On-line material: color figures
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RESOLVING THE FORMATION OF PROTOGALAXIES. II. CENTRAL GRAVITATIONAL COLLAPSE

1 5 OOOK h 1 Joux H. Wise'?, Martaew J. TUurk', AND Tom ABEL'
a O Draft version March 26, 2008
. ABSTRACT
no H2 COOllng Numerous cosmological hydrodynamic studies have addressed the formation of galaxies. Here we

choose to study the first stages of galaxy formation, including non-equilibrium atomic primordial
gas cooling, gravity and hydrodynamics. Using initial conditions appropriate for the concordance
cosmological model of structure formation, we perform two adaptive mesh refinement simulations of
~10* M: galaxies at high redshift. The calculations resolve the Jeans length at all times with more

: than 16 cells and capture over 14 orders of magnitude in length scales. In both cases, the dense,
ISOthermal COllapse 105 solar mass, one parsec central regions are found to contract rapidly and have turbulent Mach
numbers up to 4. Despite the ever decreasing Jeans length of the isothermal gas, we only find one site
g as dOeS not re ach of fragmentation during the collapse. However, rotational secular bar instabilities transport angular
momentum outwards in the central parsec as the gas continues to collapse and lead to multiple nested

unstable fragments with decreasing masses down to sub-Jupiter mass scales. Although these numerical

rOtatlonal Supp Ort experiments neglect star formation and feedback, they clearly highlight the physics of turbulence in
gravitationally collapsing gas. The angular momentum segregation seen in our calculations plays an

° h ° 1 . important role in theories that form supermassive black holes from gaseous collapse.
1n t C S1Imu athIl Subject headings: cosmology: theory — galaxies: formation — black holes: formation — secular
instability

20 AU
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The formation of
compact massive self-gravitating disks

in haloes with
virial temperatures of 30000K
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John Regan
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Cosmos

ENZO AMR

Dell cluster (2340 cores)
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T,..~35000K

Vi ~ 30kms!
M, ~ 3.3 x 108 Mg
z~15

no H, cooling
Time =0.192 Myrs

Regan & Haehnelt 2008
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Isothermal collapse at T~7000-8000K
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The inner 2x10* M, collapse by a factor 1000 in radius
before they settle into rotational support!
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Angular momentum loss and rotational support

Sim B Sim B
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Regan & Haehnelt 2008

The inner 2x10* Mg loose more than 95% of their initial
angular momentum.
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Time = 29.960 Myrs

The inner 2x10* M gsettle
into rotational support and
form a compact fat self-
gravitating disc with
“radius” ~ 0.3pc.
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An exponential disc with scale length 0.035pc.
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o
Volker Springel =~ Deborah Sijacki

Resimulating the build-up

of galaxies and black holes
(including spin history and
kicks due to gravitational
wave re-coil) in the most
massive halo at z=6 with
higher resolution.

Millennium Run
10.077.696.000 particles




How will we ever know?
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LISA will see mergers of 10°—-10" Mg
binary black holes with high S/N
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Detecting quasars at very high redshift with next
generation X-ray telescopes

Kirsty J. Rhook™ & Martin G. Haehnelt{

A significant
fraction of the
X-ray sources
detected by XEUS
should be at z>6.
Should be able to
see black holes with

masses as small as = |
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Summary

* Feedback regulated co-evolution of galaxies and their central
black holes.
 We still don’t know how (and when) massive black holes form
in the first place!
* Most probably require massive seed black holes. Direct collapse
of gas 1n haloes with T ;. = 10000K with no metals (and H,

supression) 1s least prone to fragmentation
 The inner 2x10*Mgin T . = 10000K collapse by a factor

1000 1n radius, settle into rotational support and form a
compact fat self-gravitating exponential disc with scale length
0.035pc.

e LISA and future X-ray missions offer excellent prospects
for unravelling the early build-up and determining detailed

properties of supermassive black holes.
Paris, 8™ July 2008




