Probing the ISM of a Starburst Galaxy at z = 3.8 with medium-resolution spectroscopy

Rémi CABANAC (LATT, Université de Toulouse, CNRS, France), Matthew HAYES, Daniel SCHAERER, Anne VERHAMME (Observatoire de Genève), David VALLS-GABAUD (GEPI, CNRS, OPM, France), Christopher LIDMAN (ESO, Chile), Lise CHRISTENSEN (ESO, Chile)

ABSTRACT We recently reported the discovery of FORJ0332-3557, a lensed Lyman-break galaxy at z = 3.77 in a remarkable example of strong galaxy-galaxy gravitational lensing. We present here a medium-resolution rest-frame UV spectrum of the source, which appears to be similar to the well-known Lyman-break galaxy MS1512-cB58 at z = 2.73. The spectral energy distribution is consistent with a stellar population of less than 30 Ma, with an extinction of $A_{ij} = 0.5$ mag and an extinction-corrected star formation rate SFR_{in} of 200-300 h_{70}^{-1} M a⁻¹. The Lyman- α line exhibits a damped profile in absorption produced by a column density of about $N_{III} = (2.5 \pm 1.0) \times 10^{21} \text{ cm}^{-2}$, superimposed on an emission line shifted both spatially (0.5arcsec with respect to the UV continuum source) and in velocity space (+830 km s⁻¹) with respect to the low-ionisation absorption lines from its interstellar medium), a clear signature of outflows with an expansion velocity of about 270 km s⁻¹. A strong emission line from HeII λ 164.04 nm indicates the presence of Wolf-Rayet stars and reinforces the Units] interpretation of a very young starburst. The metallic lines indicate sub-solar abundances of elements Si, Al, and C in the ionised gas phase.

Date UT time y-m-d h:m:s	exp. time s	airmass -	seeing ″	slit ″
2004-11-16 01:02:19	1495	1.446	0.56	1.0
2004-11-16 01:28:01	1495	1.326	0.55	1.0
2004-11-16 01:54:29	1495	1.231	0.65	1.0
2004-11-16 02:20:09	1495	1.161	0.76	1.0
2005-01-30 01:20:45	1495	1.103	0.50	1.0
2005-01-30 01:46:26	1495	1.154	0.54	1.0
2006-10-16 06:02:29	1400	1.028	0.66	0.8
2006-10-16 06:26:57	1400	1.020	0.53	0.8
2006-10-16 06:51:33	1400	1.021	0.61	0.8
2006-10-16 07:15:52	1400	1.031	0.50	0.8
2006-10-16 07:55:52	1400	1.068	0.73	0.8
2006-10-16 08:20:31	1400	1.104	0.61	0.8
2006-10-21 07:37:59	1400	1.070	0.48	0.8
2006-10-21 08:02:09	1400	1.106	0.61	0.8
2006-11-21 07:03:26	1400	1.266	0.85	0.8
2006-11-22 04:33:11	1400	1.023	0.85	0.8
2006-11-22 04:57:20	1400	1.036	0.89	0.8
2006-11-28 04:24:07	1400	1.030	0.54	0.8
2006-11-28 04:48:36	1400	1.048	0.63	0.8
2006-11-28 05:20:59	1400	1.087	0.50	0.8
2006-11-28 05:45:14	1400	1.130	0.57	0.8
2007-01-25 04:30:28	1400	1.916	0.67	0.8

[Arbitrary

ИΧ

E

	1" Slit
Source	
Lens	

VLT/FORS2 acquisition frame (in the Rband) and 1 arcsec-slit mask position on FORJ0332-3557: the central object is the lens at $z \sim 1$ and the top arc is the lensed Lyman break galaxy at $z \sim 3.77$.

Restframe Wavelength [nm]

Table 2. Interstellar absorption lines

Ion	λ_{vac}^{lab} nm	λ_{vac}^{obs} nm	redshift	W_0^a nm	f	$\log N^b$ cm^{-2}	$[X/H]_{\odot}^{c}$	Comments
H I Ly γ	97.254	-	-	$1.50 \pm 0.30^{+0.20}_{-0.10}$	0.0290	-	-	
H I Ly β	102.57	-	-	$2.10 \pm 0.80^{+0.80}_{-0.60}$	0.07912	-	-	
H I Ly α	1215.7	-	-	-	0.4164	21.4 ± 0.2	-	
He II	164.04	783.09	3.7738	$-0.22 \pm 0.01^{+0.02}_{-0.02}$	-	-	-	WR feature
Сп	133.45	637.01	3.7732	$0.21 \pm 0.03^{+0.03}_{-0.02}$	0.1278	15.019 ± 0.10	> -2.8	blended with C II λ 133.57
CIV	154.82	738.74	3.7716	$0.10 \pm 0.03^{+0.06}_{-0.03}$	0.1908	14.40 ± 0.21	> -3.6	
CIV	155.08	740.00	3.7718	$0.19 \pm 0.05^{+0.02}_{-0.02}$	0.09522	14.97 ± 0.25	> -3.0	sky contamination
N 1?	~ 120	572.70	3.7718	$0.36 \pm 0.18^{+0.08}_{-0.05}$	0.04023	15.84 ± 0.25	-1.6?	triplet N1λ 119.95 120.02 120.07
N III?	132.43	632.24	3.7741		-	-	-	blended with C II λ 132.39
01	130.22	621.31	3.7714	$0.15 \pm 0.03^{+0.05}_{-0.03}$	0.04887	15.30 ± 0.17	> -3.0	blended with SiII λ 130.44
OIV	134.34	641.27	3.7735	$0.14 \pm 0.01^{+0.05}_{-0.03}$	-	-	-	photospheric
Al II	167.08	797.41	3.7726	$0.19 \pm 0.02^{+0.07}_{-0.03}$	1.833	13.62 ± 0.22	> -2.5	sky contamination
S 1/i?	138.16	659.29	3.7719	$0.11 \pm 0.01^{+0.03}_{-0.02}$	-	-	-	
S 11/i?	125.38	598.57	3.7740	$0.12 \pm 0.02^{+0.04}_{-0.05}$	0.01088	15.90 ± 0.15	-1.1?	
S 11/ì?	125.95	601.31	3.7742	$0.19 \pm 0.04^{+0.03}_{-0.02}$	0.01624	-	-	blended with SiII $\lambda 126.04$
S V?	150.18	716.39	3.7741	$0.3 \pm 0.03^{+0.04}_{-0.2}$	0.00545	-	-	photospheric
S 11/i?	151.12	721.43	3.7740	$0.07 \pm 0.01^{+0.02}_{-0.02}$	-	-	-	blended with SiII λ 151.21
Sì II	126.04	601.84	3.7749	$0.19 \pm 0.04 \substack{+0.03 \\ -0.02}$	1.007	14.13 ± 0.11	> -2.8	blended with S II λ 125.95
Sì II	130.47	622.49	3.7710	$0.16 \pm 0.01 \substack{+0.06 \\ -0.03}$	0.094	15.05 ± 0.37	-1.9?	blended with $O I\lambda 130.22$
Sin	152.67	728.39	3.7710	$0.24 \pm 0.03 \substack{+0.02\\-0.02}$	0.130	14.96 ± 0.11	> -2.0	
SiII*?	153.34	731.40	3.7697	$0.04 \pm 0.01 + 0.01$	0.132	14.20 ± 0.10	-2.8?	
Siiv	139.38	665.09	3.7718	$0.19 \pm 0.03 + 0.03 = 0.02$	0.5140	14.33 ± 0.10	> -2.6	
Siiv	140.28	669.38	3.7718	$0.21 \pm 0.03 \substack{+0.04 \\ -0.02}$	0.2553	14.66 ± 0.12	> -2.3	blended with S $I\lambda 140.15?$
FeII	160.84	767.68	3.7728	$0.12 \pm 0.02 + 0.01$	0.058	14.95 ± 0.11	-2.0	

The spectrum of FORJ0332-3557 shows characteristic absorption lines from starburst galaxies. They are summarised in Table~2. The medium-resolution spectrum of the LBG cB58 (Pettini 2000) is shown in Figure above in red, superimposed on our source, for a direct comparison of the insterstellar features. It is immediately obvious that the FORJ0332-3557 source is qualitatively similar to cB58.

All common interstellar absorptions are found in FORJ0332-3557. The strong absorption features include low-ionisation lines associated with neutral gas (SiII $\lambda\lambda\lambda$ 126.04 130.47 152.67, CII λ 133.45, OI λ 130.22, AI II λ 167.08, FeII λ 160.84) and high-ionisation lines associated with a hot gas phase (Si IV $\lambda\lambda$ 139.38 140.28, CIV $\lambda\lambda$ 154.82 155.08). Table 2 lists the ion line identification, vacuum rest-frame wavelength λ_{vac}^{lab} , observed wavelength λ_{vac}^{obs} , redshift z, rest-frame equivalent width W_o , oscillator strengths f, column density, ion abundance with respect to solar [X/H], and comments. Additional uncertain identifications are question-marked, the lines noted i? might belong to interlopers at unknown redshift(s). We emphasize that the derived W_{α} are very sensitive to both sky subtraction and continuum normalisation, hence the systematic errors caused by the continuum normalisation have tentatively been computed and are shown to be close to photon counting errors, while the sky subtraction error is much more difficult to quantify. As a sanity check, we computed the equivalent widths of absorption lines in the spectrum of cB58 and found our measurements to be fully consistent with those published by (Pettini 2002).

No nebular emission lines are detected in the present spectrum other than HeII λ164.04nm (S~f{HeII}). A weak detection of CIII] λ190.87 seen on a previous spectrum (Cabanac 2005) suggests that contamination of the high-ionisation lines by nebular emission is present but small. P-Cygni profiles are visible on CII λ133.45, and CIV λ155.08.

There are several ways to derive the abundances in the interstellar medium of distant galaxies (Spitzer 1978, Pettini 2002, Savaglio 2002). Ideally one should build a curve of growth by fitting Voigt profiles and Doppler parameters b for all ions independently. Because the resolution of our observed spectrum is just under the resolution one needs for Voigt profile fitting, and is penalised by a low signal-to-noise ratio, most of the strong lines appear saturated, and most weak lines are dominated by noise. A careful analysis of the ISM metallicity goes beyond the present paper and will be done elsewhere. Here we present only qualitative arguments on the curve of growth, and Doppler parameters b. Assuming that the interstellar medium in FORJ0332-3557 is optically thin, one can infer lower limits to column densities, log(N[cm⁻²]), and abundances (given in Table 2) by taking the optically thin approximation

^a Errors are given as statistical (±photon noise) and systematic (+systematic uncertainty in location of the continuum)

- ^b Lower limits based on the assumption of an optically thin medium
- ^c Assuming solar abundances from Asplund et al. (2005)

 $\log N [cm^{-2}] = 19.053 + \log[W_{2} / \lambda^{2} f],$

where f is the line oscillator strength. The equivalent width, W_{λ} , and the wavelength λ are in nm. A tentative curve of growth indicates that the ion abundances could be 2-3 dex larger for a Doppler parameter of b = 50 km s⁻¹. In this context, the most constraining line, besides Si II* $\lambda 153.3$ which may be blended, is FeII $\lambda 160.8$, which appears unsaturated and whose small equivalent width is similar to the one measured in cB58 and would yield $b \sim 60$ km s⁻¹, similar to the $b \sim 70$ km s⁻¹ reported in cB58 (Pettini 2002).

Compared to cB58, FORJ0332-3557 W_{o} are lower by factors of 2-3 (CIV $\lambda\lambda$ 155.08 155.08, Al II λ 167.08, OI λ 130.22) to a factor of 1-1.2 (Si IV $\lambda\lambda$ 139.38 140.28, Fe II) λ160.84).

The best fit starburst99 models (red lines) are overlaid on the normalised spectrum of FORJ0332-3557 source (blue line) for two extreme scenarios of star formations with a Salpeter IMF from 1-100 M_o, at a metallicity Z_{metal}=0.004 (1/5 Z_o). The parts of the spectrum excluded of the fit are shown as dotted lines (see text). The top frame shows a constant SFR for 29 Ma. Ages older than 20 Ma are strongly favoured. The bottom frame shows an 8 Ma-old instantaneous burst of star formation. No model (at any available metallicities (1/20 Z_o) can reproduce the observed depths of the lines. For a constant SFR, larger metallicities produce older ages (29 Ma at $Z_{metal} = 0.001$, >49 Ma at $Z_{metal} = 0.008$). Instantaneous burst models tend to produce deeper lines while constant SFR models tend to better fit the observed P-Cygni profiles of CIV λ 155.08 nm.

The best-fit Voigt profile corresponding to a column density of 2.5±1x10²¹cm⁻²(solid and red dotted lines) is shown on the rest-frame spectrum (top frame). The bottom frames show the same fit in velocity space Δv .

On the panel at the bottom right the model is subtracted out of the spectrum, showing a conspicuous emission feature peaking at ~830 km/ s. This feature is also offset spatially by 2 pixels (ca. 0.5arcsec) from the main UV-continuum emitting source (see Fig. below)

The best-fit Ly-a profile of an expanding shell To fit the profile high N_H + dust is always needed. - Typically log(N_H)>21.3 (at 1 sigma), but best fits are for 21.7. Again, this is higher than N H obtained from Voigt profile fitting..

- The small "Lya peak" found at ~800-1000 km/s can be reproduced with shells of vexp~100 km/s, which is consistent with our velocity measured between the IS and 2 photospheric lines.

Higher vexp values are difficult to

reconcile, since the peak is then

expected at higher v.

- EW>~100 Ang is required to get the Lya peak - again, as expected for SFR~const (and from cB58 modeling).

- Here the peak is found at higher velocity than the 1st-order value v_peak~2* v_exp given in Verhamme (2006). This is due to the very high N_H. This effect was also mentioned in Verhamme+08, where we explain the observed increase of the Lya-IS shift in LBGs when moving to strong absorption objects.

Concerning the dust amount: one finds typically tau~1-4, which corresponds to E(B-V)~0.1-0.4 for a Calzetti law. Assuming E(B-V)=0.4, this would correspond to E(B-V)~0.26 for a SMC law.

Reduced χ^2 contours are given for the best-fit $Z_{metal} = 0.008$ sed@ models for a grid of ages and extinctions. The contour levels are arbitrarily chosen to be 1, 3 and 10% of the reduced χ^2 minimum, to outline the trends. The left panel shows the contours derived for a continuum-normalised set of deep absorption lines alone (cf. text), the center panel shows the constraints derived from the photometric colours alone, and the right panel shows the combined contours of the two independent sets taken together. The optimal parameter set is age=20±5 Ma, A_v=0.55±0.02

Zoom on the 2-D spectrum around Ly α , showing the spatial offset of ~ 2 ± 0.5 pixels (0.51±0.13 arcsec) and the velocity shift of $\Delta v = +830$ km s⁻¹, indicative of outflows (121.567 nm position is the narrow green vertical line). The lower trace is the spectrum of the elliptical galaxy that produces the gravitational lensing effect.

Dokkum P. G., Stanford S. A., Eisenhardt P., Fazio G. G., 2005, ApJL, 630, L137 Fynbo J. P. U., Starling R. L. C., Ledoux C., et al. 2006, ArXiv astro-ph/0602444 Leitherer C., Schaerer D., Goldader J. D., Delgado R. M. G., Robert C., Kune D. F., de Mello D. F., Devost D., Heckman T. M., 1999, ApJS, 123, 3 Ando M., Ohta K., Iwata I., Watanabe C., Tamura N., Akiyama Miller G. E., Scalo J. M., 1979, ApJS, 41, 513 M., Aoki K., 2004, ApJ, 610, 635 Noll S., Mehlert D., Appenzeller I., Bender R., Böhm A., Gabasch Asplund M., Grevesse N., Sauval A. J., 2005, in Barnes T. G., Bash F. N., eds, ASP Conf. Ser. 336: Cosmic Abundances as A., Heidt J., Hopp U., Jäger K., Seitz S., Stahl O., Tapken C., Records of Stellar Evolution and Nucleosynthesis p. 25 Ziegler B. L., 2004, A&A, 418, 885 Peng C. Y., Ho L. C., Impey C. D., Rix H., 2002, AJ, 124, 266 Bentz M. C., Osmer P. S., Weinberg D. H., 2004, ApJl, 600, L19 Pettini M., Rix S. A., Steidel C. C., Adelberger K. L., Hunt M. P., Berger E., Penprase B. E., Cenko S. B., Kulkarni S. R., Fox D. B., Shapley A. E., 2002, ApJ, 569, 742 Steidel C. C., Reddy N. A., 2006, ApJ, 642, 979 Pettini M., Steidel C. C., Adelberger K. L., Dickinson M., Gi-Bolton A. S., Burles S., Koopmans L. V. E., Treu T., Moustakas avalisco M., 2000, ApJ, 528, 96 L. A., 2006, ApJ, 638, 703 Bolzonella M., Miralles J.-M., Pelló R., 2000, A&A, 363, 476 Savaglio S., Panagia N., Padovani P., 2002, ApJ, 567, 702 Schaerer D., 2003, A&A, 397, 527 Buzzoni A., 1989, ApJS, 71, 817 Schaerer D., Pelló R., 2005, MNRAS, 362, 1054 Cabanac R. A., Alard C., Dantel-Fort M., Fort B., Gavazzi R., Gomez P., Kneib J. P., Le Fèvre O., Mellier Y., Pello R., Soucail Schaerer D., Vacca W. D., 1998, ApJ, 497, 618 Schaerer D., Verhamme A., 2008, ArXiv e-prints, 801 G., Sygnet J. F., Valls-Gabaud D., 2007, A&A, 461, 813 Shapley A. E., Steidel C. C., Adelberger K. L., Dickinson M., Cabanac R. A., Valls-Gabaud D., Jaunsen A. O., Lidman C., Jer-Giavalisco M., Pettini M., 2001, ApJ, 562, 95 jen H., 2005, A&A, 436, L21 Shapley A. E., Steidel C. C., Pettini M., Adelberger K. L., 2003, Castelli F., Kurucz R. L., 1994, A&A, 281, 817 ApJ, 588, 65 Cerviño M., Luridiana V., 2004, A&A, 413, 145 Spitzer L., 1978, Physical processes in the interstellar medium. Cerviño M., Luridiana V., Pérez E., Vílchez J. M., Valls-Gabaud (New York : Wiley-Interscience) D., 2003, A&A, 407, 177 Steidel C. C., Adelberger K. L., Giavalisco M., Dickinson M., Pet-Cerviño M., Mas-Hesse J. M., 1994, A&A, 284, 749 tini M., 1999, ApJ, 519, 1 Cerviño M., Valls-Gabaud D., 2003, MNRAS, 338, 481 Steidel C. C., Pettini M., Adelberger K. L., 2001, ApJ, 546, 665 Cerviño M., Valls-Gabaud D., Luridiana V., Mas-Hesse J. M., Valls-Gabaud D., 1993, ApJ, 419, 7 2002, A&A, 381, 51 Dow-Hygelund C. C., Holden B. P., Bouwens R. J., van der Wel Valls-Gabaud D., Cabanac R., Lidman C., Diego J. M., Saha P., A., Illingworth G. D., Zirm A., Franx M., Rosati P., Ford H., van 2006, in Mamon G. A., Combes F., Deffayet C., Fort B., eds, EAS Publications Series Vol. 20 of EAS Publications Series. pp 149 - 152Vázquez G. A., Leitherer C., 2005, ApJ, 621, 695

> Verhamme A., Schaerer D., Maselli A., 2006, A&A, 460, 397 Vreeswijk P. M., Ellison S. L., Ledoux C., et al. 2004, A&A, 419, Vreeswijk P. M., Smette A., Fruchter A. S., et al. 2006, A&A,

447, 145

927