

Lyman α emitters in the Local Universe

J. Miguel Mas-Hesse

Centro de Astrobiología (CSIC-INTA)

XXVth IAP Colloquium "The Lyman α Universe" July 6th, 2009

- Introduction
- Spectroscopy: The IUE era
- A deeper insight with HST/GHRS+STIS
- Lyman α imaging with HST/ACS
- Lyman α emitters: the high energy view
- Bridging the gap to high redshift galaxies: GALEX
- Summary: the future

- Lyman α is, in principle, the strongest Hydrogen emission line originating in an HII region:
 - L(Lyman α) / L(H α) ~ 7 12 in typical HII region conditions, Cases B - A, assuming no reddening.
 - EW(Lyman α) ≤ 300 Å in young, powerful starbursts (Valls-Gabaud, 1993; Charlot and Fall 1993; Leitherer, IAP, Oct. 2007).
- These predictions do not include the effects of Lyman α radiation transfer in the medium surrounding the starburst:
 - Resonant trapping reduces the mean free path of Lyman α photons, increasing significantly the probability of being destroyed
 - absorbed by dust
 - shifted in frequency
 - converted to two-photon emission

HI Voigt absorption profiles, not considering frequency shifts (Mas-Hesse et al. 2003).

- Observability of Lyman α in the nearby Universe is difficult:
 - Geocoronal emission is very strong, blinding any object at very low redshift.

- Observability of Lyman α in the nearby Universe is difficult:
 - Geocoronal emission is very strong, blinding any object at very low redshift.
 - Interstellar HI in our Galaxy produces a damped absorption which hides the potential emission of star-forming galaxies with redshifts below several 100's of km in many lines of sight.

- Observability of Lyman α in the nearby Universe is difficult:
 - Geocoronal emission is very strong, blinding any object at very low redshift.
 - Interstellar HI in our Galaxy produces a damped absorption which hides the potential emission of star-forming galaxies with redshifts below several 100's of km in many lines of sight.
 - Reddening in the far UV is much stronger than in the optical range.
 - Moreover, the shape of the extinction law in starburst regions is not well known below 1300 Å.
 - The number of facilities with access to the 1200-1300 Å range has been very limited (IUE, HST, GALEX).

- Nevertheless, Local Universe galaxies are an excellent testbed to analyze the properties of Lyman α emission, offering
 - High fluxes
 - High spatial resolution
 - Lots of ancillary data

- The International Ultraviolet Observatory (NASA, ESA, SERC, 1978-1997) opened the UV range (1100 – 3000 Å) for systematic observations at low resolution (Δλ ~ 6 Å at 1200 Å).
- Meier and Terlevich (1981) presented the first Lyman α observations of 3 HII galaxies observed with IUE.

- Meier & Terlevich (1981) noted that the only object (out of 3) with strong Lyman α emission (F(Ly α)/F(H α) ~ 2) was a low metallicity (Z=Z_o/10) HII galaxy (1543+091).
- Hartmann et al. (1984 "How to find galaxies at high redshift", and 1988) extended the sample with 13 more star-forming galaxies covering a wide range of metallicities.
 - They also found a wide range of Lyman α intensities (from strong emission to damped absorptions).

Hartmann et al. (1984)

- Calzetti and Kinney (1992) presented aperture-matched UV+optical spectra of 3 star-forming galaxies.
 - The IUE large aperture was an oval of around 10"×20" aperture. Matching Lyman α with H α fluxes required special optical setups.

 Calzetti and Kinney (1992) concluded that applying the correct extinction laws, the derived F(Lyα)/F(Hβ) were consistent with the predictions.

They proposed that the apparent correlation with metallicity was due just to erroneous extinction correction.

- But their sample consisted of only 3 objects...

		DERIVED PHYSICAL PROPERTIES					
Galaxy Name	$E(B-V)^{a}$ Galactic	E(B-V) Intrinsic	Ηα/Ηβ	Lyα/Hβ Undereddened	Ly $\alpha/H\beta^b$ Galactic Extinction	Lyα/Hβ ^b LMC Extinction	Lyα/Hβ ^b SMC Extinction
Mrk 496 Mrk 357 Tol 1924 – 416	0.00 0.04 0.07	$\begin{array}{c} 0.52 \pm 0.15 \\ 0.26 \pm 0.15 \\ 0.05 \pm 0.10 \end{array}$	5.28 4.08 3.25	0.60 1.45 2.40	$\begin{array}{r} 12.4 \substack{+7.5 \\ -7.2 \\ 8.3 \substack{+11.3 \\ -4.8 \\ 4.8 \substack{+3.8 \\ -1.2 \end{array}} \end{array}$	$20.0^{+0.0}_{-14.9}$ $5.7^{+8.9}_{-2.1}$	7.0 ^{+19.8} 7.5

Calzetti & Kinney (1992)

 On the other hand, the results by Hartmann et al. (1988) seemed to be confirmed later on by Terlevich et al. (1993), observing new Lyman α emitting HII galaxies at low metallicity.

- Valls-Gabaud (1993) reanalyzed all the IUE observations applying consistent extinction laws:
 - For several Galaxies the Lyα/Hβ ratio was rather consistent with Case A-B conditions.
- He proposed that those objects with low Lyman α emission could be in a post-starburst phase, affected by stellar Lyman α absorption.

- Finally, a more complete and careful re-analysis of the IUE spectra by Giavalisco et al. (1996) concluded that there were not clear correlations between Lyman α emission and dust or metallicity indicators
 - Geometry of the ISM was proposed to be the driving factor for the visibility of Lyman α, instead of mostly dust effects.

 Keel (1998) published integrated Lyman α fluxes of M33 obtained with Voyager around 1978, finding Lyα/Hα>3.

- Summarizing, the following hypotheses were under consideration in the early '90s to explain the visibility of the line:
 - <u>Dust + abundance</u> (Meier & Terlevich 1981; Hartmann et al. 1988; Charlot & Fall 1993).
 - <u>Extinction law:</u> with an « appropriate » (metallicity-dependent) law the problem could be solved (Calzetti & Kinney 1992).
 - Proper <u>extinction law</u> and the underlying stellar Lyα absorption could explain the observed intensity of the line, considering the <u>evolution</u> of the burst (Valls-Gabaud 1993).
 - <u>Inhomogeneous ISM geometry</u> could be the primarily determining factor, not the dust (Giavalisco et al. 1996).

→ The answer was not clear at the end of the IUE era...

Local Lyman α emitters: a deeper insight with HST/GHRS

- High resolution spectroscopy with HST/GHRS allowed for the first time to observe local BCGs without blending with the Galactic absorption and geocoronal Ly α emission.
- First trial was made by Kunth et al. (1994) on IZw18.
 - IZw18 is a low Z, low dust, unevolved BCG dominated by a young starburst. A strong Ly α emission was expected.
- The results were surprising:
 - Instead of a prominent emission, a strong, damped absorption was found !

This was against most theories considered at the time!

The Lyman α problem in BCG's: IZw18

The Lyman α problem in BCG's: IZw18

 Analysis of the metallic absorption lines showed that most of the surrounding gas was static w.r.t. the starburst.

The Lyman α problem in BCG's: damped absorptions

• Similar results were found by Thuan and Izotov (1997) on other low metallicity BCGs, like Tol 65 and SBS 0335-052.

The Lyman α problem in BCG's: a larger GHRS sample

- We decided to observe with GHRS a sample of BCGs within a range of properties:
 - Metallicity
 - Morphology
 - Compactness
- We started with Haro 2, a Z=0.4 Z_☉ BCG with an evolved, dusty starburst
 - In principle, a candidate for non-detection.
 - But a prominent Ly α emission line was detected! (Lequeux et al. 1995).

The Lyman α problem in BCG's: a larger GHRS sample

- We identified with GHRS:
 - 4 BCGs with Ly α emission
 - 4 BCGs with damped absorption profiles

The Lyman α problem in BCG's: the effect of kinematics

- In all Ly α emitters the neutral, metallic absorption lines were blueshifted by 100-400 km/s.
- In most cases, no absorption was even detected at systemic velocities.
- In the damped systems, the neutral absorptions were at, and only at, the systemic velocities.

Kunth et al. (1998)

The Lyman α problem in BCG's: the effect of kinematics

- All Lyman α emission lines showed a clear P Cyg profile, indicating the presence of an expanding shell of neutral gas.
- The profiles could be well fitted assuming the expansion velocity measured on the metallic absorption lines.
- A secondary emission peak was detected in IRAS 0833.

The Lyman α p the effect c

- All Lyman α emission lines showed a clear P Cyg profile, indicating the presence of an expanding shell of neutral gas.
- The profiles could be well fitted assuming the expansion velocity measured on the metallic absorption lines.
- A secondary emission peak was detected in IRAS 0833.

IAP July 6th, 2009

The Lyman α problem in BCG's: the effect of kinematics

- The casuistics was enlarged by Thuan and Izotov (1997), who found a strong and symmetric emission line in Tol 1214-277.
- But a detailed analysis of the profile showed a complex structure, with 2 blue- and redshifted components at ±300 km/s
 - Indication of a fully ionized expanding shell!

The Lyman α problem in BCG's: the effect of kinematics

- The casuistics was enlarged by Thuan and Izotov (1997), who found a strong and symmetric emission line in Tol 1214-277.
- But a detailed analysis of the profile showed a complex structure, with 2 blue- and redshifted components at ±300 km/s
 - Indication of a fully ionized expanding shell!

- GHRS summary: 3 well identified classes:
 - Symmetric, broad emitter.
 - Asymmetric, P Cyg like emission line.
 - Broad, damped absorption profile.

No clear correlation with metallicity, morphology, age,....

"The Lyman alpha Universe"

IAP July 6th, 2009

The Lyman α problem in BCG's: the effect of kinematics

- An important lesson from GHRS studies:
 - Since kinematics plays an important role, resolution of ~50 km/s is needed to understand the properties of the line.
- Lower resolution data can even become misleading
 - Caution for studies at high redshift!

The Lyman α problem in BCG's: spatial analysis with HST/STIS

- The next step was to get long slit high-resolution spectroscopy with STIS, aiming:
 - To map the distribution of the neutral gas and its kinematics.
 - To detect Lyman α photons leaking after multiple scattering by the neutral gas.
- 3 cases were analyzed in high resolution (Mas-Hesse et al. 2003):
 - Haro 2 and IRAS 0833, strong Ly α emitters.
 - IZw18, prototypical damped absorber.
- Low resolution STIS data become available also for
 - Haro 2 (Chandar et al. 2004; Oti-Floranes et al. 2009, see poster)
 - ESO 338-IG04 (Chandar et al. 2004; Hayes et al. 2005)
 - NGC 4303 (Colina et al. 2002)

- Very compact massive cluster. .
- Decoupled Ly α emission • extended over more than 10" (~1 kpc).
- Absorption edge at the same ٠ velocity all over the slit:
 - Large expanding shell ____ powered by the central starburst.
 - Identified in $H\alpha$ by Legrand et al. (1997).

The Lyman α problem in BCG's: Haro 2

The Lyman α problem in BCG's: Haro 2

The Lyman α problem in BCG's: Haro 2

- Low resolution STIS spectra of Haro 2 show a complicated structure and distribution of Lyman α emission and absorption:
 - The spatial distribution of the neutral HI and its kinematics is very complex.

The Lyman α problem in BCG's: Haro 2

The Lyman α problem in BCG's: Haro 2

Spatial distribution of Lya

The Lyman α problem in BCG's: Haro 2

- Low resolution STIS spectra of Haro 2 show a complicated structure and distribution of Lyman α emission and absorption:
 - The spatial distribution of the neutral HI and its kinematics is very complex.
 - The diffuse, extended Lyman α emission becomes one of the strongest components.

The Lyman α problem in BCG's: spatial analysis with HST/STIS

52

- Massive stars spread over ~1 kpc.
- Same velocity of the absorption edge over ~4 kpc.
 - A secondary, broad and blueshifted emission blob
 located to the S.

The Lyman α problem in BCG's: IRAS 0833+6517

The Lyman α problem in BCG's: IRAS 0833+6517

The Lyman α problem in BCG's: IZw 18

- No leaking or diffuse emission was detected over the slit.
 - The scattered photons are completely destroyed within the neutral cloud

The Lyman α problem in BCG's: IZw 18

The Lyman α problem in BCG's: Mkn 357

• Keel (2005) observed with the same setup Mkn 357, getting very similar results.

The Lyman α problem in BCG's: Mkn 357

"The Lyman alpha Universe"

J. Miguel Mas-Hesse

• While Lyman α emission is generally weak in local BCGs, it can become quite strong in other kind of galaxies.

Local Lyman α emitters: NGC 4303 and Seyfert 2

"The Lyman alpha Universe"

J. Miguel Mas-Hesse

Local Lyman α emitters: status after IUE+GHRS+STIS

- Kinematical decoupling between the neutral gas surrounding a starburst and the ionized region seems to be the key factor driving the visibility and properties of the Lyman α line.
- When Lyman α photons become affected by resonant scattering, even small amounts of dust might destroy them.
- Distribution of the surrounding neutral and ionized gas is therefore critical:
 - Porosity (low column density) or complete ionization of the gas along the line of sight can lead to strong emission lines.

The emission of Lyman α photons is therefore a complex multiparametric process leading to a large variety of results.

Local Lyman α emitters: imaging

- HST/ACS allowed us to get high resolution Lyman α images, aiming:
 - To map the distribution of the neutral gas and its kinematics
 - To analyze the distribution of the diffuse component
 - To study the relation between Lyman α emission and young, massive stars in the different star-forming knots.
- 6 objects covering a wide range of properties were observed:

Target name	Alternative name	$\mathrm{RA}(2000)$	$\operatorname{Dec}(2000)$	$E(B-V)_{\rm MW}$	$\log(n_{\rm HI})_{\rm MW}$	$\frac{v_r}{(\mathrm{km/s})}$	$\frac{12+}{\log({\rm O/H})}$	M_B	$\mathrm{Em}/\mathrm{Abs}^a$	
Haro 11 SBS 0335-052 IRAS 08339+6517 Tol 65 NGC 6090 ESO 338-04	ESO 350–38 SBS 0335-052E PGC 024283 ESO 380–27 Mrk 496 Tol 1924-416	$\begin{array}{c} 00:36:52.5\\ 03:37:44.0\\ 08:38:23.2\\ 12:25:46.9\\ 16:11:40.7\\ 19:27:58.2 \end{array}$	$\begin{array}{r} -33:33:19\\ -05:02:40\\ +65:07:15\\ -36:14:01\\ +52:27:24\\ -41:34:32\end{array}$	$\begin{array}{c} 0.049 \\ 0.047 \\ 0.092 \\ 0.074 \\ 0.020 \\ 0.087 \end{array}$	$20.4 \\ 20.6 \\ 20.6 \\ 20.7 \\ 20.2 \\ 20.7$	$6175 \\ 4043 \\ 5730 \\ 2698 \\ 8785 \\ 2832$	7.9 7.3 8.7 7.6 8.8 7.9	-20 -17 -21 -15 -21 -19	$egin{array}{c} { m Em} \\ { m Abs} \\ { m Em} \\ { m Em} \\ { m Em} \end{array}$	
						Ö	Östlin et al. (2009)			

Local Lyman α emitters: imaging

- The process of image subtraction between both ACS filters (F140LP and F122M) required the development of complex tools (see Hayes et al. 2009).
- One of the most important results has been the discovery of an extended, diffuse component, which contributes to a significant fraction of the total Lyman α emission.

More details on Lyman α imaging results will be provided in next talk by G. Östlin.

- Since Lyman α emission is associated with the presence of massive outflows, it is expected that Lyman α emitters should be relatively strong X-ray sources.
- An ongoing study with Chandra and XMM-Newton shows that this is indeed the case.

X-ray emission distribution follows the location of the star formation knots.

Chandra 0.3-8 keV + ACS FUV contours

Extended X-ray emission, spreading from the knots of star formation.

- In Haro 2, a thermal (red) component is centered on the older burst (NW B).
- There are evidences of young massive binaries and or Supernova remnants in knot SE.

"The Lyman alpha Universe"

IAP July 6th, 2009

J. Miguel Mas-Hesse

Local Lyman α emitters: high energy emission

- The X-ray observations demonstrate the presence of a very turbulent interstellar medium in Lyman α emitters.
- There might be a trend showing diffuse Lyman α emission from the same locations where diffuse, soft (thermal) X-rays are produced.

• Deharveng et al. (2008) have studied a sample of 66 Lyman α emitting star-forming galaxies in the redshift range z ~ 0.2 – 0.35.

"The Lyman alpha Universe"

- Deharveng et al. (2008) have studied a sample of 66 Lyman α emitting star-forming galaxies in the redshift range z ~ 0.2 0.35.
- They found no trend between EW (Ly α) and the UV continuum reddening
 - Decoupling of reddening affecting line and continuum photons.
 - EW (Ly α) peaks at around 30 Å.

"The Lyman alpha Universe"

- Deharveng et al. (2008) have studied a sample of 66 Lyman α emitting star-forming galaxies in the redshift range z ~ 0.2 0.35.
- They found no trend between EW (Ly α) and the UV continuum reddening
 - Decoupling of reddening affecting line and continuum photons.
 - EW (Ly α) peaks at around 30 Å.
- The Lyman α escape fraction spans a large range of values (~0 to ~100%).
 - In the Local Universe the escape fraction is always below 14% (Östlin et al 2009).

Lyman α emitters in the Local Universe: Summary

 After 30 years of observations we have got Lyman α spectra for < 30 star-forming galaxies in the Local Universe, thanks mainly to IUE and HST, and Lyman α images of only 6

- > 60 have been added by Galex at intermediate redshift.

- Kinematics of the surrounding neutral gas, porosity of the medium, ionization state of the gas, amount of dust,.... all them play a role in driving the visibility of the line.
 - The kinematical decoupling of the neutral and ionized gas seems to be the key factor to avoid the destruction of Lyman α emission line photons by resonant trapping in the gas surrounding the starbursts.

Lyman α emitters in the Local Universe: The future

- Observations of Lyman α emitters in the Local Universe will remain possible only as long as ACS, STIS and COS remain operational on the HST.
- The post-HST era will be a *dark age* for local Universe UV astronomy, unless some ongoing projects mature and become a reality (very specially the World Space Observatory-UV).
- But the window of UV astronomy at redshiftz z > 2 is flourishing!

This Conference is a good example and we'll learn a lot about Lyman α emission at high redshifts.