${\rm Ly}\alpha$ emission from GRB host galaxies

Bo Milvang-Jensen, Johan Fynbo, Daniele Malesani, Jens Hjorth (Dark Cosmology Centre, Copenhagen), Pall Jakobsson, *et al.*

The Lyman alpha universe, IAP, Paris, 7 July 2009

GRB basics

 $\mathsf{GRB} = \mathsf{Gamma-Ray}\;\mathsf{Burst}$

- γ -ray burst, localised to a few arcmin (e.g. Swift satellite)
- X-ray afterglow usually seen, localised to a few arcsec (e.g. Swift)
- Optical afterglow not always seen
- Spectroscopy of the optical afterglow can provide a redshift (from interstellar absorption lines such as Si II, C IV, Fe II, Mg II)
- A *host galaxy* may be found, typically in deep observations at later times

Do GRB host galaxies have Ly α emission?

In the pre-Swift era, Fynbo et al. (2003) noted: 5 detections of Ly α emission from GRB host galaxies out of 5 possible.

This result needed to be verified using a large, well defined and complete sample of *Swift* bursts

The GRB host ESO Large Programme by Hjorth et al.

Fundamental properties of GRB-selected galaxies: A Swift/VLT legacy survey

- GRBs as tracers of star-forming galaxies (long GRBs are associated with the deaths of massive stars, Hjorth et al. 2003; Stanek et al. 2003)
- GRB-selection complementary to other galaxy selection methods: LAE, LBG, DLA, DRG, SMG
- Special attention devoted to making the sample useful for statistical studies through simple and well-determined selection criteria
- Sample important for future complementary HST, X-shooter/VLT, Herschel, ALMA and JWST observations

Large Programme VLT observations

The survey has several imaging and spectroscopy components. Ly α spectroscopy presented here (Milvang-Jensen et al., in prep.)

GRB selection criteria for the host Large Programme

- 1. Detected *automatically* by the γ -ray imager onboard Swift
- Detected in the period 2005 March 1 to 2007 August 10 (Swift fully operational, and automatic slews routinely enabled)
- 3. Swift X-ray observation available within 12 hours from the trigger
- 4. An X-ray afterglow should be detected
- 5. The localization of the burst (from X–ray, optical or NIR afterglow) should be better than 2.0" (90% error radius)
- 6. Only long-duration bursts
- 7. Milky Way extinction $A_V \leq 0.5 \text{ mag}$
- 8. Sun distance $> 55^{\circ}$
- 9. Declination in the range -70° to $+27^{\circ}$ (suited for VLT observations)
- 10. No nearby bright stars (would complicate host galaxy observations)

This gives a sample of 68 bursts.

Redshift status (will improve): 42 bursts have a redshift, z = 0.03-6.30. Additionally, a number of bursts have redshift limits.

Selection criteria for the Ly α spectroscopy

Apply the following single criterion to the sample of 68 GRBs:

• Redshift should be known and be in the range z = 1.8-4.5

This gave a sample of 20 bursts, with z = 1.9-4.0. All were observed targeting Ly α .

There was no requirement that the host should be detected in the deep R-band imaging(!) The statistics are

- detected : 15 hosts, with R in the range 24.6 to 27.6
- maybe detected: 1 host
- not detected : 4 hosts, with R fainter than typically 27

${\rm Ly}\alpha$ observations

- VLT/FORS1
- Grisms: 600B, 600V, 600R, and 300V
- ► 1.3" longslit
- Spectral resolution FWHM rest-frame: typically 500 km/s, but generally 350–900 km/s
- Total net exposure time: $\sim 1.5-4$ hours

Measurement of ${\rm Ly}\alpha$ in the spectra

Ly α measured in the 2D spectra using the following default aperture:

- Centre: rest-frame velocity = +300 km/s, spatial position = 0.0 arcsec
- Width: 900 km/s \times 1.2 arcsec

The following slides will show some example spectra.

Example: continuum detected, Ly α not detected Spatial profile 2D spectrum, raw 2D spectrum, smoothed 6 6 4 Spatial position [arcsec] 2 0 θ -2 -4 -6 0.10 -2000 0.00 0.05 0 2000 - 2000 0 2000 V (rest-frame) [km/s] V (rest-frame) [km/s] Median flux

Example: continuum *not* detected, Ly α *not* detected Spatial profile 2D spectrum, raw 2D spectrum, smoothed 6 6 4 Spatial position [arcsec] 2 0 -2 -4 -60.10 -2000 0.00 0.05 0 2000 - 2000 0 2000 V (rest-frame) [km/s] V (rest-frame) [km/s] Median flux

Alternative spectral plots: Ly α detected

Result: Ly α fluxes and luminosities

- 9 Ly α detections, at 3 σ confidence
- 11 non-detections (3σ upper limits plotted)

 $(H_0 = 70 \,\mathrm{km}\,\mathrm{s}^{-1}\,\mathrm{Mpc}^{-1},\ \Omega_{\mathrm{m}} = 0.3,\ \Omega_{\Lambda} = 0.7)$

Toy plot: Ly α luminosity vs M_{AB} (continuum, 1215 Å)

- Ly α luminosities from the spectra
- Continuum absolute magnitudes from the R–band images, assuming an $F_{\nu} \propto \nu^{-1}$ spectrum

$Ly\alpha$ velocity offset

- Ly\(\alpha\): emission line in the host spectrum (note: Ly\(\alpha\) velocity measured simply as the centroid of the line)
- Afterglow: interstellar absorption lines (e.g. Si II, C IV, Fe II, Mg II)

Summary

- 9 of the GRB hosts have detections of Lyα emission (at 3σ).
 This is out of:
 - ▶ 15 hosts detected in the R-band (R = 24.6-27.6)
 - 20 GRBs observed in total
- For the 9 detections
 - Ly α flux in the range (1 to 20) $\times 10^{-18}$ erg cm⁻² s⁻¹
 - Ly α luminosity in the range (0.1 to 0.7) $imes 10^{42}$ erg s⁻¹
 - Lylpha EW in the range \sim 10 to 80 Å
- \blacktriangleright For the non-detections, 4 systems have 3σ upper limits on EW of \sim 10–25 Å
- Velocity shift $v(Ly\alpha) v(interstellar)$ found to be 200–600 km/s
- Analysis ongoing (Milvang-Jensen et al., in prep.)