IAP Supernova Workshop, June/July 2010

# Physics potential of supernova neutrino and gamma ray detection

with John F. Beacom (CCAPP, Ohio State) and Eli Dwek (NASA Goddard) SH, Beacom & Dwek PRD 79, 083013 (2009) SH & Beacom, arXiv:1006.5751

Shunsaku Horiuchi

Center for Cosmology and AstroParticle Physics, Ohio State Univ



#### Probing SNe: $\gamma$ -rays and $\nu$

- Model: thermonuclear and core-collapse SNe
- Prediction: produce nuclear  $\gamma$ -ray and thermal  $\nu$
- Testability: γ-ray satellites, underground v detectors
- Implications: Confirmation/surprises

#### The aim is to fill this table:

| distance | SN location     | SNIa gamma rays | Core collapse neutrinos |
|----------|-----------------|-----------------|-------------------------|
|          | Milky Way       |                 |                         |
|          | Local: few Mpc  |                 |                         |
|          | Local: > 10 Mpc |                 |                         |
|          | Cosmic          |                 |                         |

#### Neutrinos

# Core-collapse v



Super-Kamiokande (Nakahata)



- Progenitors: up to and including fallback BH, i.e, approx. 8 – 40 Msol
- Galactic SNe v detection
  - Excellent statistics (~10<sup>4</sup> events)
  - Directional, energy, timing
  - Reveals core temperature
- But rare: few per century (in MW)

# To a higher rate...

- Core-collapse in nearby galaxies: not feasible with current neutrino telescopes (~1 event from Andromeda); task for next-generation detectors [e.g. Ando et al. (2005), Kistler et al. (2008)]
- Neutrinos from all past core collapse: emission is averaged, no timing or direction information, <u>but signal is always there</u>
  – [e.g., Bisnovatyi-Kogan & Seidov (1982), Ando & Sato (2005), Beacom (2010)]

Diffuse supernova neutrino background (DSNB)



#### Predicting the DSNB

• We have a good handle on the core-collapse supernova rate



IAP Supernova Workshop, Paris

# **DSNB** limits and implications



- Super-Kamiokande SK-I limit [Malek et al. (2003)]
- Upgrading Super-K (doping with Gd) to reduce backgrounds in progress (PI: Vagins)
- Event rate: per year, at Super-K:

| Spectra  | Current SK | Upgraded SK |
|----------|------------|-------------|
| 8 MeV    | 1 – 3      | 3 – 5       |
| 6 MeV    | 1 – 2      | 2-4         |
| 4 MeV    | 0.4        | 1-2         |
| SN 1987A | 0.5        | 1 – 2       |

The neutrino spectrum can be measured using data over several years

[Horiuchi et al (2009)]

IAP Supernova Workshop, Paris

#### Where to look

| Distance        | SN la gamma rays | Core collapse neutrinos |
|-----------------|------------------|-------------------------|
| Milky Way       |                  | Rare and waiting        |
| Local: few Mpc  |                  | Next-generation         |
| Local: > 10 Mpc |                  | Future                  |
| Cosmic          |                  | POSSIBLE VERY SOON      |

#### Gamma rays

#### Type la supernova gamma rays

- Progenitors: approx. 2 8 Msol binaries
- **Physics:** nuclear MeV gamma rays from Ni and Co decays
  - Initially trapped ( $\rightarrow$  powers optical LC)  $\overline{\phantom{a}}$
  - Eventually escape (50% by ~40 days)
- Rate: SNIa are rare



**Burning location** 



#### To a higher rate...cosmic SNIa rate

- Compare the SNIa progenitor birth rate  $\leftrightarrow$  -> SNIa rate fit the delay-time distribution  $\propto t^{-\alpha}$  and the SNIa efficiency
- we find  $lpha=1.0\pm0.3$  and normalization as shown:



#### **Detection prospects**

• Cosmic SNIa: background contribution is small [e.g. Strigari et al. (2005), Horiuchi & Beacom (2010)]



#### Physics potential

[Horiuchi & Beacom (2010)]

- 1 SNIa per year by increasing INTEGRAL sensitivity by ~ 3
- With the Advanced Compton Telescope, ~100 SNIa per year
- Next-generation γ-ray detector would give revolutionary discrimination power:
  - single or double degenerate?
  - Deflagration or detonation?



28th June 2010

# Conclusions

| Distance        | SN la gamma rays          | Core collapse neutrinos |
|-----------------|---------------------------|-------------------------|
| Milky Way       | Too rare                  | Rare and waiting        |
| Local: few Mpc  | Rare and waiting          | Next-generation         |
| Local: > 10 Mpc | <b>EXCITING PROSPECTS</b> | Future                  |
| Cosmic          | Large background          | POSSIBLE VERY SOON      |

- Neutrinos: the DSNB will measure the *averaged* neutrino spectrum, revealing *averaged* core temperatures, including progenitors from NS to BH forming stars
- Gamma rays: satellites will measure annual gamma-ray light curves, revealing Ni production and tomography of the expanding ejecta, including SD and DD discrimination

28th June 2010