Binary Models for the Progenitors of "Peculiar" Supernovae

Philipp Podsiadlowski (Oxford)

- Binary evolution affects the final structure and fate of stars in many ways
 - ▷ appearance (envelope properties)
 - \triangleright core properties \rightarrow final fate (WD, NS, BH, GRB)
- \rightarrow key in understanding the diversity of supernovae

Question: What is a peculiar supernova?

- \rightarrow a well observed one!
- exceptions (homogeneous types)
 - \triangleright SNe II-P (singles dominate)
 - ▷ bulk of typical SNe Ia
- for all supernova types except SNe II-P, binary evolution is important or essential

Supernova Classification

- depends on three factors
 - ▷ explosion type
 - > envelope/ejecta properties
 - > circumstellar environemnt
- use for new classification scheme? (e.g. Gal-Yam)

Summary of Explosion Types

- Neutron-star formation
 - \triangleright classical iron core collapse \rightarrow typical core collapse: $10^{51}\,ergs$ (single and binary)
 - $\triangleright \ electron-capture \ supernova \ in \ degenerate \ ONeMg \\ core \ (AGB, \ AIC, \ MIC) \rightarrow faint \ core \ collapse \ (binary \ preferred)$
- Black-hole formation
 - \triangleright prompt collapse: \rightarrow failed supernova
 - \triangleright fall-back: \rightarrow faint supernova
 - > expected fate for most single WR stars (except at very high metallicity; see Heger, Meynet, Georgy)
 - $\triangleright \mbox{ with rapid rotation: collapsar/hypernova} \rightarrow \mbox{ energetic supernova (hypernova, GRB SN) (only 1 in 10^3)}$
- thermonuclear explosion of Chandrasekhar-mass CO WD, binary
- He detonation on accreting CO white dwarf \rightarrow explosive \rightarrow supernova-like (faint SN Ia?)
- pair-instability supernova for very massive stars (low Z?) (> 140 M_{\odot}): creation of electron/positron pairs \rightarrow explosive nuclear burning \rightarrow complete disruption of the star

Supernova lightcurves (core collapse)

LIGHTCURVES OF CORE-COLLAPSE SUPERNOVAE

- central explosion may be very similar in all cases (with $\rm E \sim 10^{51}\, ergs$)
- variation of lightcurves/supernova subtypes mainly due to varying envelope properties
 - > envelope mass: determines thermal diffusion time and length/existence of plateau
 - $\triangleright \ envelope \ radius: \ more \ compact \\ progenitor \ \rightarrow \ more \ expansion \ work \\ required \ \rightarrow \ dimmer \ supernova$

Sequence: II-P \rightarrow II-L \rightarrow IIb \rightarrow Ib \rightarrow Ic

• mass loss by binary evolution and stellar winds

Hsu, Ross, Joss, P.

Circumstellar Environment

- interaction driven supernovae
- SNe IIn
 - > narrow emission lines from circumstellar material
 - > phenomenon, unrelated (?) to explosion mechanism
- e.g. SN 2002ic
 - \triangleright explosion type unclear: SN Ia or Ic
 - \triangleright oddball (SN 1 1/2) or important clue?
 - \triangleright symbiotic SN Ia
 - or extreme example of supersoft channel (delayed dynamical instability)

LBV supernovae

- not predicted by single-star theory
- change single-star theory? Or alternative solution

Causes of Supernova Diversity

• binarity

- > supernova appearance (mass loss/accretion, merging)
- ▷ core structure

• metallicity

- \triangleright appearance (mass loss, compactness)
- ▷ core evolution
- rotation/magnetic fields
 - > important in early evolutionary phases
 (only?), e.g. through mixing (magnetic
 fields prevent rapidly rotating evolved cores
 (Spruit))
- dynamical environment
 - $\triangleright e.g. in dense clusters \rightarrow dynamical interactions \rightarrow different final products (dynamical mergers \rightarrow more HNe?)$

Binary Interactions

- most stars are members of binary systems
- a large fraction are members of interacting binaries (30 50%)
- rule of thumb: each decade of log P contains 10% of all stars (for P from $10^{-3} 10^7 \text{ yr}$)
- $\rightarrow~50\,\%$ of all stars are in binaries with $P_{orb} < 100\,yr$
- note: mass transfer is more likely for post-MS systems
- mass-ratio distribution:
 - ▷ for massive stars: masses correlated
 - ▷ for low-mass stars: less certain
- binary interactions
 - ▷ common-envelope (CE) evolution
 - ▷ stable Roche-lobe overflow
 - binary mergers
 - ▷ wind Roche-lobe overflow

Stable Mass Transfer

- mass transfer is 'largely' conservative, except at very mass-transfer rates
- mass loss + mass accretion
- the mass loser tends to lose most of its envelope \rightarrow formation of helium stars
- the accretor tends to be rejuvenated (i.e. behaves like a more massive star with the evolutionary clock reset)
- orbit generally widens

Unstable Mass Transfer

- dynamical mass transfer →
 common-envelope and spiral-in phase
 (mass loser is usually a red giant)
 - b mass donor (primary) engulfs secondary
 - spiral-in of the core of the primary and the secondary immersed in a common envelope
- if envelope ejected \rightarrow very close binary (compact core + secondary)
- otherwise: complete merger of the binary components \rightarrow formation of a single, rapidly rotating star

PhP & Joss (1989)

Case BB Mass transfer

- low-mass helium stars ($\leq 3.5 \, M_{\odot}$) expand drastically after helium core burning
- \rightarrow mass transfer from helium star to companion
- \rightarrow transformation into a CO star (Dewi, Pols)
- produces "normal" SNe Ic (e.g. prototype SN 94I had a progenitor $\lesssim 18\,M_\odot$ [Sauer])

Double Pulsar (PSR J0737-3039)

- $\bullet \ pulsar \ B \ (1.249 \ M_{\odot})$ formed in a faint SN Ib
- $\bullet~with~0.2-0.3\,M_{\odot}$ of ejecta

Habets (1986)

Binary Mergers

- one of the most important, but not well studied binary interactions
- BPS: ~ 10 % of all stars are expected to merge with a companion star \rightarrow 1 binary merger in the Galaxy every 10 yr!
- efficient conversion of orbital-angular momentum to spin orbital-angular momentum
- if mergers occur early in the evolution \rightarrow subsequent spin-down just as for single stars
- late mergers to affect the nearby CSM and pre-SN structure (e.g. case C mass transfer)
- note: case C mass transfer is more frequent at lower metallicity (Justham, PhP 2008)
- $\rightarrow~$ implications for GRB progenitors
- \rightarrow rapidly rotating core, short WR phase, circumstellar shell?

Systems with Massive Primaries $(8 M_{\odot} < M_{1}^{i} < 20 M_{\odot})$

Binary Evolution and the Final Fate of Massive Stars

Recent: binary evolution affects not only the envelope structure, but also the core evolution

- generically: after mass loss/accretion during an early evolutionary phase, a star behaves like a less/more massive star
- the core evolution is very different for stars that lose their hydrogen envelopes before helium ignition (no hydrogen burning shell during He core burning → no growth of the convective core) leading to smaller CO and finally smaller iron cores
 - \triangleright stars in binaries up to $50/60 M_{\odot}$ may end as neutron stars rather than as black holes (Brown, Lee, Heger, Langer)
 - $\triangleright \ black-formation \ without \ rotation \rightarrow faint \\ supernova?$

The Final Fates of Stars

• the effects of binary evolution

	single/wide binary	close binary
CO white dwarf	$< 7{ m M}_{\odot}$	$< 7-17{ m M}_{\odot}$
ONeMg white dwarf	$7-10{ m M}_{\odot}$	$7-8{ m M}_{\odot}$
Neutron star:		
electron-capture	$\sim 10{ m M}_{\odot}$	$7/8-10{ m M}_{\odot}$
iron core collapse	$10-20/25{ m M}_\odot$	$10-50/60\mathrm{M}_\odot$
Black hole:		
$\mathbf{two-step}$	$20/25 - 40(?){ m M}_{\odot}$	$> 50/60{ m M}_{\odot}$
prompt	$> 40{ m M}_{\odot}(?)$	
no remnant $(Z?)$	$> 140{ m M}_{\odot}$	

Note: (wide binary includes Case C mass transfer)

- the effects of metallicity
 - ▷ affects mass loss and compactness → supernova appearance (lower metallicity stars have less mass loss and are more compact)
 - b affects core evolution (e.g. importance of CNO burning) and final core structure
 - \triangleright example: the core structure of a $5\,M_\odot$ (Z=0.001) is similar to the core structure of a $7\,M_\odot$ (Z=0.02) star

The Progenitor of SN 1987A Thomas Morris (Oxford/MPA), Ph.P.

SN 1987A: an anomalous supernova

- progenitor (SK $-69^{\circ}202$): blue supergiant with recent red-supergiant phase (10^4 yr)
- chemical anomalies:
 - ho helium-rich (He/H \sim 0.25, N/C \sim 5, N/O \sim 1)
 - CNO-processed material, helium dredge-up
 - \triangleright barium anomaly (5 10 solar)
- the triple-ring nebula
 - \rightarrow axi-symmetric, but highly non-spherical
 - \rightarrow signature of rapid rotation

The Triple-Ring Nebula

- discovered with NTT (Wampler et al. 1990)
- HST image (Burrows et al. 1995)
- not a limb-brightened hourglass, but physically distinct rings
- axi-symmetric, but highly non-spherical
 - \rightarrow signature of rapid rotation?
 - > not possible in simple single-star models (angular-momentum conservation!)
 - > supernova is at the centre, but outer rings are slightly displaced
 - \triangleright dynamical age: $\sim 20,000\,{
 m yr}$

all anomalies linked to a single event a few 10^4 yr ago, most likely the merger of two massive stars

Formation of the Triple-Ring Nebula Morris and Podsiadlowski (Science 2007)

- 3-dim SPH simulations (GADGET; Springel)
- simulate mass ejection during merger and subsequent blue-supergiant phase
- angular momentum of orbit \rightarrow spin-up of envelope
- \rightarrow flattened, disk-like envelope
 - energy deposition in rapid spiral-in phase ($\leq 1/3E_{\rm bind}$)
- $\rightarrow \ \ \, {\bf partial \ envelope \ ejection} \rightarrow \ \, {\bf outer} \\ {\bf rings, \ bipolar \ lobes}$
 - equatorial mass shedding during red-blue transition \rightarrow inner ring

The Progenitor of SN 1993J

- prototype SN IIb
- progenitor: stripped K supergiant (< $0.5 \,\mathrm{M_{\odot}}$ envelope)
- \bullet initial mass: $\simeq 15\,M_{\odot}$
- most likely due to late binary interaction (Joss et al. 1988; Podsiadlowski; Nomoto; Woosley)
- predicted companion star has been found (Maund et al. 2004)
- Potential Problem: predicted rate too low to explain all IIb? (PJH 1992; Claeys 2009)
 - other channel or clue to binary evolution?

The Diversity of SNe Ic (II)

- normal SNe Ic
 - $ho \, {
 m M_{MS}} \simeq 10 50/60 \, {
 m M}_{\odot}$ in close binaries
 - \triangleright case B (BB) mass transfer
- hypernovae/GRB supernovae
 - $hirac \mathrm{M_{MS}} \simeq 23 40/50\,\mathrm{M_{\odot}}$
 - b late case C mass transfer (explosive CE ejection?)
- faint SNe Ic (Ib?)
 - $\triangleright \, M_{MS} \gtrsim 23 \, M_{\odot}$
 - ▷ single, slowly rotating stars
- also at low Z: homogeneous evolution → rapidly rotating single stars → energetic SNe Ib/Ic (Yoon & Langer; Heger & Woosley)

Nomoto Fork Plot

