

Identification of progenitors of core collapse supernovae

S. J. Smartt Astrophysics Research Centre Queen's University Belfast

M. Fraser (QUB), M. Crockett (Oxford) J. Eldridge (IoA), J. Maund (DARK), S. Mattila (Turku)

ESO VLT + NTT Large programme Collaboration : S. Bennetti, A. Pastorello, S. Valenti, J. Sollerman, M. Ergon, M. Botticella, R. Kotak, M. Turatto et al.

Overview and motivation

- Direct constraints on progenitor stars
- Test of final stages of stellar evolution
- Consistency with spectral and lightcurve modeling ?
- Range in energy and ejected masses : link to explosions ?
- Black hole and NS formation : which stars

Testing theory

Heger et al. (2003); Eldridge & Tout 2004 : now can place observational constraints

Nearby SNe discovered by amateur astronomers, LOSS (see recent astro-ph papers) and CHASE

Relative SN rates 10.5 yrs

Smartt et al., 2009

		Relative	Core-Collapse only			
Type	No.	/ per cent / per cent				
II-P	55	39.6	59.1			
II-L	2.5	1.8	2.7			
IIn	3.5	2.5	3.8			
IIb	6	4.3	6.5			
Ib	9	6.5	9.7			
Ic	17	12.2	18.3			
Ia	37	27.6				
LBVs	7	5.0				
Unclassified	2	1.4				
Total	139	100	100			
Total CCSNe	93	66	100			

- 19980101-20080630
- 139 SNe discovered in galaxies with $V_{\rm vir}$ <2000 kms⁻¹ (13.2 SNe yr⁻¹)
- See Li, Filippenko et al. : LOSS results (astro-ph papers)

~26% SN-HS Timage coincidence rate.

NGC3949

M101

VLT :NGC3621, Bresolin et al. 01

NASA, ESA, and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration • Hubble Space Telescope ACS • STScI-PRC07-15

Detection of progenitors

Figures from Smartt 2009 ARAA

- Within the volume limited, 10.5 yr survey for progenitors : three "gold" events
- SN2008bk, SN2005cs, SN2003gd
- Red star identified coincident with all three.
- Typical magnitudes : $M_v \sim -4.5$; $M_l \sim -6.5$
- Discovery papers :

Van Dyk et al. 03, Smartt et al. 04, Maund et al. 05, Li et al. 06, Mattila et al. 08.

8m AO imaging - new approach

Gemini + Altair : Crockett et al. 07

VLT + NACO : Mattila et al. 08

Gal-Yam et al. 2006, Elias-Rosa et al. 2010 Gemini,VLT, Keck diffraction limited *K*-band AO images 0.08" and ~0.02" pixels = well sampled PSF Differential astrometry ~ 20 milliarcseconds RMS

The disappearance of 2003gd

SN2003gd: $V=25.8 \pm 0.15$ $V - I = 2.5 \pm 0.2$ Smartt et al. 04, Van Dyk et al. 03

GMOS I'

Maund & Smartt (2009)

Four confirmed cases of disappearance : SN1987A, SN1993J, SN2003gd, SN2005gl (Gal-Yam & Leonard 2009)

Mass estimates from stellar evolutionary tracks

Red points : Milky Way red supergiants (Levesque et al. 2005) STARS stellar evolutionary tracks SN progenitors : SN2003gd (black), SN2005cs (blue box)

Other examples: no detection

Van Dyk et al 02, Smartt et al. 01,02,

- **SN1999gi** in NGC3184,
- HST U+V pre-explosion
- D=11Mpc (Leonard et al. 2002)

• $M \le 12 M_{\odot}$

- **SN2001du** in NGC1365
- HST UVI pre-explosion
- D=17Mpc (Cepheid Key P.)

• $M \le 15 M_{\odot}$

Summary of II-P progenitors : 10.5yr search

Supernova	SN	Galaxy	Galaxy	Distance		A_V	TG	$r_{\rm G}/r_{25}$	[O/H]	$\log L/L_{\odot}$	ZAMS
	Type		Class	Mpc	Method		(kpc)		(dex)	(dex)	(M_{\odot})
1999an	П	IC 755	SBb	18.5 ± 1.5	TF	0.40 ± 0.19	4.7	0.82	8.3	< 5.16	< 18
1999br	II-P	NGC 4900	SBc	14.1 ± 2.6	Kin.	0.06 ± 0.06	3.1	0.69	8.4	< 4.76	< 15
1999em	II-P	NGC 1637	SBc	11.7 ± 1.0	Cep.	0.31 ± 0.16	1.6	0.28	8.6	< 4.69	< 15
1999ev	II-P	NGC 4274	SBab	15.1 ± 2.6	Kin.	0.47 ± 0.16	5.3	0.46	8.5	5.1 ± 0.2	16^{+6}_{-4}
1999gi	II-P	NGC 3184	SABc	10.0 ± 0.8	Mean	0.65 ± 0.16	3.1	0.30	8.6	< 4.64	< 14
2001du	II-P	NGC 1365	SBb	18.3 ± 1.2	Cep.	0.53 ± 0.28	14.7	0.53	8.5	< 4.71	< 15
2002hh	II-P	NGC 6946	SABc	5.9 ± 0.4	Mean	5.2 ± 0.2	4.1	0.45	8.5	< 5.10	< 18
2003gd	II-P	NGC 628	Sc	9.3 ± 1.8	Mean	0.43 ± 0.19	7.5	0.58	8.4	4.3 ± 0.3	7^{+6}_{-2}
2003ie	II?	NGC 4051	SABb	15.5 ± 1.2	TF	0.04	7.3	0.66	8.4	< 5.40	< 25
2004A	II-P	NGC 6207	Sc	20.3 ± 3.4	Mean	0.19 ± 0.09	6.7	0.79	8.3	4.5 ± 0.25	7^{+6}_{-2}
2004am	II-P	NGC 3034	Sd	3.3 ± 0.3	Cep.	3.7 ± 2.0	0.64	0.14	8.7	Cluster	12^{+7}_{-3}
2004dg	II-P	NGC 5806	SBb	20.0 ± 2.6	Kin.	0.74 ± 0.09	4.3	0.50	8.5	< 4.45	< 12
2004dj	II-P	NGC 2403	SABc	3.3 ± 0.3	Cep.	0.53 ± 0.06	3.5	0.37	8.4	Cluster	15 ± 3
2004et	II-P	NGC 6946	SABc	5.9 ± 0.4	Mean	1.3 ± 0.2	8.4	0.92	8.3	4.6 ± 0.1	9^{+5}_{-1}
2005cs	II-P	NGC 5194	Sbc	8.4 ± 1.0	PNLF	0.43 ± 0.06	2.7	0.22	8.7	4.25 ± 0.25	7^{+3}_{-1}
2006bc	II-P	NGC 2397	SBb	14.7 ± 2.6	Kin.	0.64	1.4	0.30	8.5	< 4.43	< 12
2006my	II-P	NGC 4651	Sc	22.3 ± 2.6	TF	0.08	4.4	0.37	8.7	< 4.51	< 13
2006ov	II-P	NGC 4303	SBbc	12.6 ± 2.4	TF	0.07	2.3	0.26	8.9	< 4.29	< 10
2007aa	II-P	NGC 4030	Sbc	20.5 ± 2.6	Kin.	0.09	10.3	0.91	8.4	< 4.53	< 12
2008bk	II-P	NGC 7793	Scd	3.9 ± 0.5	TRGB	1.0 ± 0.5	3.9	0.66	8.4	4.6 ± 0.1	9^{+4}_{-1}

Smartt et al. 2009,MNRAS : used Cambridge STARS code, homogeneous analysis, consistent luminosity and mass estimates

Does a Salpeter/Scalo IMF fit ?

- Solid : Salpeter IMF maximum mass of 16.5M_☉
- Dashed : Salpeter IMF, maximum mass of $30M_{\odot}$
- Lower mass limit from White dwarfs : >6-7M_☉ (K. Williams et al 2009 : WD surveys)

Maximum likelihood approach

- $\bullet m_{\min}$: is better measured with the detections only. Unconstrained IMF if limits used.
- $m_{\text{max}:}$ calculated using both detections and limits :

•
$$m_{\rm min} = 8^{+1}_{-1.5} \,\mathrm{M}_{\odot}$$

• $m_{\rm max} = 16.5 \pm 1.5 \,\mathrm{M}_{\odot}$

The "red supergiant problem"

- Most massive RSGs in MW and LMC are 25-30 M_{\odot}
- Where are these progenitors ?
- Would be the easiest to detect in the pre-explosion images
- From Salpeter/Scalo IMF we would have expected 4-5 bright, massive progenitors
- Do they produce IIn and II-L?

Levesque et al 05,06 : new Teff for RSGs

Probing the explosion

- Utrobin & Chugai : hydro models of LCs
- Factors of 2 -3 higher masses (2005cs, 2004et, 1999em...)

- With current mass-loss rates : difficult to get more than $15 M_{\odot}$ of ejecta
- $20-25M_{\odot}$ star : >5M $_{\odot}$ mass loss, 1.5M $_{\odot}$ remnant
- Maximum ejecta mass : $15M_{\odot}$ for a H-rich, RSG

Initial mass – final mass relation

Initial mass

Eldridge & Tout 2004 : STARS Models

⁵⁶Ni mass vs. ejecta

mass

- Nomoto et al. 2006 : ejecta mass from lightcurve and spectral models
 - Assume WR stars and use stellar evolution models to determine initial mass
 - Faint, ⁵⁶Ni poor branch : fallback SNe from high mass stars
 - Direct progenitor identification results :
 - All faint II-P, have low KE, and low ⁵⁶Ni
 - See talk by M. Fraser
 - <u>No evidence</u> of high mass progenitors
 - Large diversity in explosion energies between $7-16M_{\odot}$

Faint IIP: Pastorello et al. 09, 06 Kitaura et al. 04, Wanajo et al. 09

"Yellow supergiant" progenitors

- Elias-Rosa et al. 2009, 2010 ; Fraser et al. : SN2008cn, SN2009kr
- Relatively bright star SN2009kr: $M_V = -7.62 \pm 0.55$; $V I = 1.13 \pm 0.2$
- How massive and what spectral type ?
- Solution to the Red supergiant problem ? (see last weeks paper by Smith et al. – astroph)

"Yellow" supergiant progenitors

- G2 K2 spectral type, log L/L_{\odot} = 5.1
- What is the mass ?
- The "nearest" track is NOT a physically valid model it is NOT a SN progenitor

Initial-mass : final luminosity relations

- Stellar luminosity determined by the He-core luminosity
- SN progenitor model must have evolved core (end of C or O at least)
- Picking the "nearest" track is not valid for SN progenitors – OK for stable stars
- <u>Ideally : a model that produces</u> <u>Fe-core, at that HRD position</u>
- Next best : take the final luminosity as an initial mass guide

Constraints on Type SNe lb/lc

Wolf Rayet stars : not lbc progenitors?

(PhD Thesis), Van Dyk et al. 03 Maund & Smartt 05, Maund et al. 05 Gal-Yam et al. 05

- LMC (or M31) WR magnitude distributions $\Rightarrow \sim 5-10\%$ probability we have had no detections by chance
- SN2008ax : detection of WNL progenitor of a IIb (Crockett et al. 08_{24}

SN2008ax : IIb + WNL progenitor ?

Crockett et al. 2008, Pastorello et al. 2008

Summary

Summary

- Red supergiants are progenitors of II-P Sne (as predicted by Chevalier, Falk & Arnett, and others ...)
- Confident detections of 4 (+ several others) low luminosity progenitors : log L/L≈ 4.3± 0.3, colours imply M-type supergiants
- Suggests these stars *do NOT* go through 2nd dredge up
- Lower limit for core-collapse : no more than $7-8M_{\odot}$
- Lack of high mass progenitors statistically significant ?
- No detection of Ibc progenitors the known massive WR population is not the progenitor population of Ibc SNe
- Massive stars collapse to black holes we have not yet detected the

SN? $16 \rightarrow 60? M_{sol}$

Lessons Learned

- 10 years of searching not as easy as first thought
- 93 CCSNe within 28Mpc : ~32 with good pre-explosion images
- 4 high significance, unambiguous detections. 3 questionable ones, plus 3 on unresolved host clusters
- 5-10% yield (but large number of upper limits restrictive)
- High resolution images (HST or 8m AO) crucial

The future :

- Extend to another ~10years
- Focus on the 10Mpc volume : large HST project (huge legacy science potential)
- Guaranteed ~15 CCSNe in 10 years. With full mosaic, deep WF3/ACS of the galaxies, discovery potential high

Comparison of codes

