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Outline

● Dust Temperatures and Masses

● Literature (IRAS/ISO/SCUBA/Spitzer/Herschel)

● Recent Laboratory work on silicates

● HERITAGE LMC/SMC effort on submm excess

● SED fitting of stars: another way to get dust masses

● Dust mass SED fitting benchmark

● Comments, questions, discussion, random thoughts, and 
heckling encouraged during talk



Dust Temperatures/Masses

● What they tell us
– Dust Temp  radiation field intensity→

– Dust Mass  phase independent tracer of ISM→

– Emissivity variations  diagnostics of dust grain composition→

● Single temperature modified blackbody
– Provides a simple interpretation of the observations

– Modified BB fits remarkably well(!) and widely used

– But may have systematic biases

● More complicated models are possible, but the number of 
parameters increases (and assumptions)

– These models still use modified BBs, just more of them

– Dust temperature changes to <U>



● Review

● Far-IR/submm emission measures the total grain volume

● Dust mass mainly independent of the grain radius

● Dependent on grain density

● a = 0.1 m is the average for a MRN (1977) grain size 
distribution

● 1983 Chicago values for constants

●  = 1 for 50-250 m,  = 2 for > 250 m



Why volume?



Used IRAS (12-100 m)
182 galaxies
“Warm” dust mass (T > 25 K)
Dust mass correlates better
    with H

2
 than HI

M(H
2
)/M(dust) ~ 570



71 galaxies with far-IR ISO 80-180 m
No dependence of dust temperature on galaxy type



8 galaxies with SCUBA 450 & 850 m data
Q() = A- best (compared to -1 and -2) with  values from 0.9-1.9



2007, ApJ, 663, 866

Fit the SINGS sample with a dust 
grain model consistent with MW 
dust

Grains heated by power law + 
delta function U
Dust-to-gas ratios reasonable

Red = whole galaxy
Blue = galaxies with SCUBA data
Green = IR emitting region only



2007, ApJ, 663, 866

Dust masses w/o and w/ SCUBA data give 
masses within a factor of 2.2

“astronomical” silicate emissivity break



“Astronomical” 
Silicates

● Break at 200 m;  ~ 2 shortward

● Excess emissivity @ 500 m = 0.11 (MW has submm excess!)
– a = 0.1

● Driven by MW FIRAS observations

2001, ApJ, 554, 778



2009, A&A, 508, 645

2 out of 4 galaxies do not 
show strong submm 
excess

Dust grain model
VCG component:
Haro 11/NGC 1705
 = 1; T = 10 K
>70% of dust mass

Unreasonable gas-to-dust 
ratios for Haro 11 (5)



What is the Submm Excess?
 (What Herschel will most uniquely contribute to dust 

temperature & mass studies) 

● Excess emission above that expected from fits to  < 200 m 
data

– First done with IRAS/ISO versus ground-based 450/850/1200 m

– Expanded with Spitzer to include Spitzer MIPS 160 m

– With Herschel, now possible to explore the shape of the submm excess

● Either emissivity variations or colder dust (T < 10 K)

● In extragalactic observations, seen to increase in strength with 
decreasing metallicity of a galaxy

● Potential barrier to dust mass/temperature/<U> calculations

● Clue to grain properties

● Dust masses don't seem to change much with the addition of 
Herschel data (Draine and other talks and Herschel special issue papers) 



Herschel Space Observatory

● Ground-based limited to only 2 submm (often only 1)
– Hard to define the behavior of the submm excess

● Herschel SPIRE bands at 250, 350, & 500 m ideal

● PACS 100 (& 70/160) m also useful constraints

● Lots of galaxies observed

● Both big and small 

● All calibrated the same
– Relative calibration errors quite small



Herschel Special Issue
(2010, A&A, 518)

● Braine et al.; M33, dust to map total gas

● Galamtez et al; NGC 6822, ½ solar
– amorphous carbon instead of graphite; gas-to-dust = 186

● Gordon et al.; LMC, ½ solar
–  = 1.5; 10% excess @ 500 m (details in following slides)

● Grossi et al.; Virgo low-met galaxies (log(O/H)+12 = 7.8-8.3)

– Two dwarfs with 500 m excess

● Kramer et al.; M33, ½ solar
–  =1.5, gas-to-dust ratios of 120 to 200 a different radii

● Meixner et al.; LMC, ½ solar
– Submm excess of 6-17% @ 500 m

– Amorphous carbon instead of graphite; gas-to-dust = 287

● O'Halloran et al.; NGC 1705, 1/3 solar
– 2nd component; T = 5.8 K,  = 1; gas-to-dust ratio = 100



Confirms earlier T- results
See also Planck results (Bernard talk)
already heard that T- not explained 
by fitting errors (Bernard talk)

2010, A&A, 520, L8



Talk at “Herschel and the Characteristics of Dust in Galaxies” meeting and paper submitted to A&A

Amorphous silicates have emissivities that vary with 
temperature with shape and strength 

See also Mennella et al. 1998; 
Boudet et al. 2005) 



Talk at “Herschel and the Characteristics of Dust in Galaxies” meeting and paper submitted to A&A

Amorphous silicates have emissivities that vary with 
temperature with shape and strength



HERTIAGE: Herschel Key Project
(Meixner et al. 2010, A&A, 518, L71)

HERITAGE has mapped both LMC/SMC at resolutions ≤10 pc
in two galaxies that have ½ and ⅕ solar metallicities



Fits to Full LMC/SMC HERITAGE Data

● PACS 100, 160 & SPIRE 250, 350, 500
– Reduced by the HERITAGE team

– PACS data “corrected” to the IRAS100/MIPS160 calibrations

● Convolve all data to SPIRE 500 resolution (40” ~ 10 pc)

● Fit the SED of each pixel (14”x14”) with good data
– Surface brightnesses at all  > 3 above background

● Look at the ensemble behavior of the fractional residuals
– Should only by sensitive to relative calibration uncertainties

– Can the fit residuals tell us the origin of the submm excess? 

● Try different - emissivity laws 

● Try a broken emissivity law

● Try a second population of colder dust



Fit Details
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Where:
a = 0.1 m
 = 3 g cm-3

d = 50 kpc or 60 kpc
Q

em
(160) = 5.5x10-4

  (Loar & Draine 1993)

(Gordon et al. 2010, A&A, 518, L89; Gordon et al. 2011, in prep,)



LMC Dust Temp/Mass Image
 = 1.5 (w/o 500 m)



SMC Dust Temp/Mass 
Image

 = 1.5 (w/o 500 m)



Fit Fractional Residuals
SMC  = 1.5, w/o 500 m

Fractional 
residuals 
should only be 
dependent on 
the relative 
calibration

within SPIRE 
or PACS 1-2%

between 
PACS/SPIRE
< 5%



LMC w/o 500 m LMC w/ 500 m



SMC w/o 500 m SMC w/ 500 m



Fit Fractional Residuals
SMC  = 1.5, w/o 500 m

Pattern of 
fractional 
residuals



Broken Emissivity 
Law Example


1
 = 1.5

Emissivity excess @ 500 m = 0.2


2
 = 1.3

Emissivity excess @ 250 m = 0.05
Emissivity excess @ 350 m = 0.11

Temp = 20 K



SMC w/ broken emissivity law
Break at 300 m

SMC fitted excess fractions



2nd Colder Dust Component Example

Emission excess @ 100 m = 0.001
Emission excess @ 160 m = 0.01
Emission excess @ 250 m = 0.06
Emission excess @ 350 m = 0.12

T
1
 = 20 K

Emission excess @ 500 m = 0.2
T

2
 = 10 K

Mass in 2nd component 19X 1st component



SMC w/  2nd component (T=7.5K) SMC fitted excess fractions



Fit Residuals Results

● Good fit residuals possible
– (ok fits) Simple modified black body w/ low 

●  = 1.5 (LMC) and 1.3 (SMC) consistent with previous work

– Broken emissivity law,  = 1.5-2

– 2nd dust component,  = 1.5-2

● All at ~10 pc resolution in both LMC and SMC
– Best fits do vary between the two Clouds

– Submm excess varies between the two clouds (SMC higher)

● Future: compare these results with the full grain model 
and TLS model

● Need additional information to determine the origin of 
the submm excess in the Magellanic Clouds 
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2nd component (T
2
=7.5K)

2nd component (T
2
=10K)SMC w/o 500 m

 SMC broken emissivity

 = 2.0
 = 1.7
 = 1.5
 = 1.3
 = 1.0

10x mass

5x mass



SMC Excess 
Fraction @ 500 m

 = 1.5, bw = 300 m

Anti-correlated with dust mass
Same results Galliano presented on LMC
Excess not constant at same metallicity



Panchromatic Hubble Andromeda Treasury

● Multi-Cycle Treasury Program (PI: Dalcanton, lots of 
co-Is)

– 1/3 of M31 area, 828 orbits

– F275W, F336W, F475W, F814W, F110W, & F160W

● Individual star SED fitting to extract A(V) & R(V)
– Use stellar atmospheres + evolutionary tracks (known distance)

– Also get stellar parameters at the same time

– Probabilistic/Bayesian fitting using as much info was possible 

PHAT coverage on MIPS 24 m

Year 1, Year 2, Year 3, & Year 4

Brick 9



PHAT: SED fitting of Stars (Preliminary)



Brick 9

Mean A(V)

MIPS 160 m

359,549 stars with at least 4 bands
337,562 “good” fits (prob > 0.1) used



Dust Mass
SED Fitting 

Benchmark Project

● Project idea genesis – Leiden 
Herschel & Dust in Galaxies 
meeting (Feb 2011)

● Set of ~ 10 observed IR 
(+UV/Opt) SEDs

– Include MW high-lat SED

– Normalized and w/o names

● Fit same data with different 
models

– By the modelers themselves

● Probe the systematics 
between dust mass models

● Goal to write a short paper

http://dirty.as.arizona.edu/~kgordon/bsed/sed_benchmark.html



Summary/Thoughts
● Dust mass, temperature/<U>, and emissivity values provide 

valuable diagnostics of ISM and environment
– Phase independent ISM tracer

– Tracer of mean radiation field

– Probe of dust grain properties (correlate with aromatics/UV bump?)

● Single temperature modified blackbody fits still useful
– Just as accurate for dust masses as complicated fits (?)

– May be dependent on physical resolution probed

– Fractional residual analysis of full dust grain models?

● Submm Excesses in Magellanic Clouds
– LMC/SMC best fit with  = 1.5 with broken emissivity law

● Julia Roman-Duval's analysis of gas-to-dust ratios

– LMC, 500 m: ~10%

– SMC, 500 m: ~20%

– Excess due to emissivity variations – not very cold (T < 10 K) dust

● Systematics between dust mass measurements in the ISM and 
circumstellar (AGB/SN) shells (dust reservoir versus production)



Thanks
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