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The dust lifecycle
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Key ISM processes that lead to changes in the dust
composition (and structure)

e« « H He, M
‘e gas

e energetic interactions (shocks & cosmic rays) -

— sputtering/erosion, implantation in gas-grain collisions

— fragmentation in grain-grain collisions '

ve ® '\.
e |low-energy interactions (dense clouds) —

Ice. H:0
— accretion of gas species in gas-grain collisions
— coagulation in grain-grain collisions & «9®

 photo-chemical processing of dust (PDRs) -
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Ion and electron irradiation of dust

lead to: erosion by sputtering, implantation, heating, ...

high ion-grain relative velocity grain sitting in a hot gas
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Outline

@ cosmic rays
@ shocks
@ ion-grain collisions
@ grain-grain collisions
@

@ the dust lifetime revisited
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Outline

@ cosmic rays
@ shocks
@ ion-grain collisions
@ grain-grain collisions
@ UV irradiation

@ the dust lifetime revisited
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cosmic
rays
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Refractory dust - SiC
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Hecht et al. (2009) - CRs and SiC

Eloment/Si

--> grains retain their structural (crystalline) integrity
--> pre-solar SiC ages ~ 3-1100 Myr
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atom implantation at = 1000 km/s in SN shocks
Lyon et al. (2007), King et al. (2010) -->
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Figure 1. Examples of trace element depth-profiles which
show either abundance peaks, are symmetrical, or vary
little with depth. Dashed lines indicate the approximate
depth at which the grain was removed from the TOF-
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cosmic Refractory dust - silicates
rays

Bringa et al. (2007)
-- CRs and silicate amorphisation
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--> amorphisation of crystalline "AGB silicates”

--> application of experimental results
( 10 MeV Xe ion irradiation of forsterite, Mg2SiOy4 )

— - —AC-HER Star
— =ISM
Crystalline Forsterite

--> extrapolation to 0.1-5 GeV heavy ion
( e.g., Fe cosmic ray ion irradiation )

--> indicates a = 70 Myr amorphisation time-scale

14
Wavelength (um)
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cosmic
rays

Carbonaceous dust - hydrogenated amorphous carbons
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(a) Irradiation of a-C:H 1 with 85 MeV Si’* between 0 (red) (b) Irradiation of a-C:H 2 with 91 MeV C® between 0 (red) (c¢) Irradiation of soot with 85 MeV Si’™* between 0 (red) and
and 1 10" ions cm™ (purple) and 6 10'* ions cm™* (purple) 8 10" ions cm ™ (purple)

Fig.2. Examples of the destruction of the aliphatic C-H stretching IR absorption feature around 2900 ¢cm™' during ion irradiation of a-C:H 1 (a), a-C:H 2 (b), and soot (c). The upper (red) line is the
initial spectrum, before irradiation. The optical depth decreases (from green to purple lines in the online coloured version) as the fluence rises. The fluence between two spectra is of the order of few
10'2 and few 10" jons cm~? for the Si’* and C®" irradiations, respectively.

Godard et al. (2011) - CRs and hydrogenated amorphous carbon dust processing

--> MeV (0.2-160) ion irradiation of a-C:H solids
--> dehydrogenation and aromatisation

--> effects of cosmic rays only important for time-scales > 100 Myr

--> .". CRs in dense clouds cannot explain the lack of the 3.4 um absorption band
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cosmic
rays

Carbonaceous dust - PAHs
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circumcoronene, Cs;Hig
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cosmic
rays

Carbonaceous dust - PAHs
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— Interstellar shocks
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PAHs < : ' : lifetime
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are destroyed c|_3 . timescale
by CRs in Solar
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107
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Fig.8. PAH survival time against CR bombardment (ions + electrons)
as a function of the molecule size (N¢). The total lifetime has been cal-
culated for f = 0.5 and 1, where f is the fraction of the transferred
energy available for dissociation, and adopting our reference values for
the threshold energy for carbon atom ejection, 7, = 7.5 eV and for the
fragment binding energy, E; = 4.6 eV. We remind the reader of the
variation in the calculated survival time against CRs, due to the uncer-
tainty on the parameters E; and T, (cf. Figs. 6 and 7). The PAH lifetime
against shock destruction in the ISM is shown for comparison.

Micelotta et al. (2011)
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cosmic
rays

Summary
--> SiC - seem to survive CRs ‘unscathed’ for up to 1 Gyr

--> a-C:H dust - dehydrogenation time-scales > 100 Myr

--> PAHs - with Nc < 1000 C atoms survive ¢ 1 Gyr
- Nc £ 100 C atoms < 100 Myr

--> crystalline silicates - rapidly amorphised in = 70 Myr

Are crystalline silicates really this susceptible to CR processing?
Crystalline pre-solar AGB silicates are now being found.
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Outline

@ cosmic rays
@ shocks
@ ion-grain collisions
@ grain-grain collisions
@ UV irradiation

@ the dust lifetime revisited
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shocks Silicate dust

Silicate ion irradiation & amorphisation

“bubbles’ (porosity)

amorphous crystalline + amorphous
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Fig.2. TEM picture of a crystalline olivine sample irradi-
ated with 10" 10 keV He' /em?. The dark lines at the right
hand side are Bragg diffraction lines. The picture in the bottom
right is the electron diffraction pattern of the irradiated sam-
ple taken in the amorphous region. The observed diffuse halo
is characteristic of an amorphous material. Note the presence
of bubbles in the sample
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shocks

Noble gas implantation into SiC
He, Ne, Ar, Kr & Xe

* Noble gas fractionation fits indicate that:

« G component (isotopically AGB) was implanted at
— ~ constant velocity
— low fluence
— in PN winds at ~ 200 km/s

N component (isotopically 'normal’) was implanted at
— ~ constant velocity
— higher (eroding) fluence

— in SN shock waves in the ISM Guillard et al. (2011)

.. but what if the irradiating ion
IS chemically reactive?

H* is the most abundant ion
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shocks
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shocks
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shocks

.. but what happens to this stuff
when you heat it?

.. in the presence of carbon
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shocks Silicate dust

Annealing and reduction of amorphous silicates

Iron reduction
FeO + C -> Fe + CO

Fe nanoparticles
in an amorphous
silicate matrix

Mg-rich
§ amorphous silicate ;
| with ‘hidden’ Fe! |

200 n hd 200 nm
—— ——

Fig. 1. TEM micrograph of annealed sample a) at 870 K for 780 h
and b) at 1020 K for 3 h. Rounded metallic nano-particles enclosed
in the amorphous silicate. They formed by a reduction reaction and
further precipitation since metallic Fe is immiscible in silicates. The
microstructure closely ressembles to those to GEMS found in IDPs.

Davoisne et al. (2006), Djouadi et al. (2007)

Ant Jones - “From Dust to Galaxies” - 28/6/2011



shocks

Silicate dust

Comparison with GEMS in IDPs

Fig. 2. TEM micrograph of sample annealed at 970 K (55 h) showing
a forsterite crystal (Fo) embedded in a amorphous matrix. Note the
dentritic structure at the edge of the grains. Some metal particles are
also present in the amorphous phase (some of them are arrowed).

Davoisne et al. (2006), Djouadi et al. (2007)
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shocks Silicate irradiation

@ He* and H* irradiation does
@ --> amorphisation of crystalline silicates
@ --> atom implantation (grain growth)
@ --> porosity (‘bubble formation’)

o H* irradiation does not

® --> form SiH bonds

@ --> lead to major OH bond formation

@ Annealing of Mgi.sFeo.2SiO4 in the presence of carbon

@ --> amorphous Mg-rich silicate Fe nanoparticles
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shocks Silicate irradiation

@ He* and H* irradiation does
@ --> amorphisation of crystalline silicates
@ --> atom implantation (grain growth)
@ --> porosity (‘bubble formation’)
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ck
Shocks Carbonaceous dust - PAHs

® o ¢
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shocks

Carbonaceous dust - PAHs

stable PAHs in the diffuse ISM
¢
o2s

st

Jochims, Baumgadrtel & Leach (1999)
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shocks

Carbonaceous dust - PAHs

E. R. Micelotta et al.: PAH processing in interstellar shocks
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shocks
o Carbonaceous dust - PAHs
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Outline

@ cosmic rays
@ shocks
@ ion-grain collisions
@ grain-grain collisions
@ UV irradiation

@ the dust lifetime revisited
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Fragmentation in grain-grain collisions

low grain-grain relative velocity high grain-grain relative velocity
sticking bouncing fragmentation
~ cm/s > cm/s > 1 km/s

\

N

dust
particle

dust
particle
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Fragmentation in grain-grain collisions
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shocks
Carbonaceous dust - hydrogenated amorphous carbons

earlier work

/—w—'..__.__

“

—
£
O

—
v
-

D
Q
=
c

- =

—_—
)

—

—
©

'
£

©

—— MRN distribution
— - graphite (Jones 1996)

—— Sputtering (this work)

10 100 Radius (A) 1000

Fig.6. The effects of a-C:H grain fragmentation and erosion in a
100kms~! shock for an initial Mathis, Rumpl & Nordsieck (1977)
grain size distribution (solid grey line), for a-C:H carbon grains (this
work, solid black line) and our previous results for graphite (grey
dashed line; Jones, Tielens & Hollenbach (1996)).
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shocks

Carbonaceous dust - hydrogenated amorphous carbons

Carbon (and silicon) in shocks Observational evidence

Welty et al. (2002) - T Ori cloud shocked to Vshock = 100 km/s
Podio et al. (2006) - dust in shocks in HH objects Vshock = 20-40 km/s
Slavin (2008) - dust in the LIC Vshock = 150 km/s

These studies indicate:

~ 10% of Al, Si & Fe in dust = gas (i.e., = 10% dust destruction)

~ solar abundance of carbon in the gas (i.e., * 100% dust destruction)
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shocks

Carbon and silicon in shocks: what the model predicts
- for a 100 km/s shock (Jones et al. 1996)

- the model predicts: 18% silicate dust destruction

- observations indicate: = 10%

- the model predicts: 7% carbon dust destruction

- observations indicate: = 100%

Model predictions are:
- about OK for silicate dust
- out by a large factor for carbonaceous dust
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shocks Carbonaceous dust - hydrogenated amorphous carbons

— — sputtering

- = -grain - grain
——thermal sp.

— total

——— total (Jones et al. 1996)
-~ - total no frag.

hydrogenated g
/' S~
amorphous ¢’ carbon

c
R
e

Q

= |

—
-

v

Q
o
.

(7]

3
e
X

shock velocity

Fig.S5. Destruction of a-C:H grains as a function of the shock velocity
calculated with the inclusion of fragmentation in grain-grain collisions
as per Jones, Tielens & Hollenbach (1996). The lines types are the same
as in Fig. 4. We also show the total for the case without fragmentation
from Fig, 4.

Serra Diaz-Cano Jones (2008)
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shocks

... but if carbonaceous dust
is so “easily’ destroyed in shocks,

why is there so much carbon
in dust in the ISM?

We seem to be forced to conclude that:

There must be some very efficient route
to carbonaceous dust re-formation
in the ( low density ) ISM.
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Outline

@ cosmic rays
@ shocks
@ ion-grain collisions
@ grain-grain collisions
o

@ the dust lifetime revisited
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arbonaceous dust - graphite

mossen (3 111

wwsn | 00 (1113 (d)

Fi1G. 7. TEM bright-field images of ultrathin sections of selected circumstellar graphite spherules with internal crystals (cf. Table 1). (@) Spherule B!
with a large (100 nm) central Fe-rich crystal (Fe or Fe carbide). The dark, radial spokes are a diffraction effect: the graphite layers surrounding the crystal are
actually concentric. (b) Spherule B2e, with a central cluster of 4 (Ti, Zr, Mo)C crystals. () Spherule BOg, with a 50 nm noncentral TiC crystal with minor Zr

and Mo, and a core of nanocrystalline carbon just interior to this ¢ cof. Fig. 3); this spherule section contains nine other smaller crystals that are not

diffracting (hence are not visible) in this orientation. (d) Spherule Blw, with two noncentral Ru-, Zr-, and Mo-bearing TiC internal crystals; a third crystal is
present but is not visible in this image (cf.

BERNATOWICZ et al. (see 472, 768)
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Temperature

Carbonaceous dust - hydrogenated amorphous carbons

ultra small grain

source gas
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|
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Goto et al. (2003)
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Carbonaceous dust - hydrogenated amorphous carbons

IRAS 22272+5435 Laboratory Spectra
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Carbonaceous dust - hydrogenated amorphous carbons

uv
photolysis
aliphatic C-C sp3 C atoms
' JR H—C ion
' irradiation
heat

O o - | i.e.

olefinic C=C sp2 C atoms [RCICEUUNEUEILE

associated with
H atom loss

aromatic C=C sp2 C atoms
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The carbon dust lifecycle in the ISM

Evolved stars & (re-)accretion in the ISM

formation of H-rich, aliphatic-rich
a-C:H solids

Petrie

Photon Dominated Regions (2003)

(PDRs) & HIl regions

“free flying
aromalics’

Pety et al. (2005)

grain photo- & collisional ‘fragmentation’ and
daughter product photodissociation

Ant Jones -

small grain aromatisation
to H-poor, aromatic-rich a-C:H
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Carbonaceous dust - hydrogenated amorphous carbons
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Fig.8. The predicted eRCN spectrum in the 3.2 — 3.6 um C-H stretch-
ing region as a function of Xy calculated using the structural de-
composition described in §2.2.3 and the data in Table 2. The diamonds,
squares and triangles indicate the aliphatic, olefinic and aromatic band
positions, respectively (see Table 2). Jones (2011a)
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Carbonaceous dust - hydrogenated amorphous carbons
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Carbonaceous dust - hydrogenated amorphous carbons

absorption coefficient o = 4mk/A "Tauc plot” (kE)°> vs E
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Aim: a fit to the available laboratory data for a-C:H / a-C materials
and to apply this to the interpretation of astrophysical data

Jones (2011b)
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Carbonaceous dust - hydrogenated amorphous carbons

N.B. The following four slides contain data are not yet publicly available.

The presented OP‘|'EC(s) n & k data ( from 50eV - 10cm )
will be made available as soon as the submitted papers
presenting the a-C:H / a-C carbonaceous dust models

have been accepted for publication in A&A.
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Carbonaceous dust - hydrogenated amorphous carbons

1 10 1 10
wavelength [ micron ] wavelength [ micron ]

100
wavelength [ micron ]

Jones (2011b)

10 100 1000
wavelength [ micron ]

optical property prediction tool for the Evolution of Carbonaceous solids

OpPtEC(s) data - n & k ( 50eV - 1cm )
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Carbonaceous dust - hydrogenated amorphous carbons
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Carbonaceous dust - hydrogenated amorphous carbons

For H-rich HAC / a-C:H materials 2 um 0.5 pum
( purple line ) l l

Qsca/Qext ~1 - 0.5 -2 Hm

(i.e., “pure scattering’ )

Could explain the observed
“*coreshine” without the need
to invoke grain growth.

1/wavelength [ micron™ ]

This requires the accretion of
H-rich a-C:H / HAC materials in
denser molecular regions

Jones (2011b)
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Carbonaceous dust - hydrogenated amorphous carbons

However, things are probablygoing to get rather complicated!

The optical properties, as reflected in the band gap Eg,
depend on the material history, its composition and its size

XH (solid)
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Xu - the hydrogen atomic fraction, is a measure of the composition
Jones (2011a,b,c)
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Carbonaceous dust - hydrogenated carbons ( inc. PAHs )

@ ion and electon irradiation ( shocks & CRs ) does
@ --> implantation pollution
® --> ‘rapid’ destruction of carbonaceous dust

@ implanted atoms in pre-solar SiC grains are consistent with

@ --> ion implantation in PNe winds and IS shocks
@ --> at velocities of the order of 100% of km/s
@ UV photon and ion irradiation does
@ --> grain evolution ( loss of H, aliphatic --> aromatic )

@ H & C ‘accretion’ in the ISM does not

@ --> formation of 'graphite-like’ carbon
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Outline

@ cosmic rays
@ shocks
@ ion-grain collisions
@ grain-grain collisions
@ UV irradiation

@ the dust lifetime revisited

50 Ant Jones - “From Dust to Galaxies” - 28/6/2011




The dust lifetime calculation

@ Using the McKee (1987) approach

Mass of the ISM 1/SN rate

The dust rong = HSM X TSN

lifetime

f €(vs)dM;(vs) 4

Mass of the ISM shocked by a SN to a given velocity

4.5 X 109 Mg X TN -
2 %2914 % (1.1/n) °

Mass oF ’rhe ISM shocked by a SN

ISNR =

(where n= 6 for s1hcate dust and 3 for a—C H dust)

Serra Diaz-Cano Jones (2008)
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The dust lifetime calculation

® W.ith an estimation of the uncertainties

uncertainties are
i of the order of §

Mass oF ’rhe ISM l/SN ra’re

nx[(45+22)><109]><(125+62)

_ ' +30-50% |
ISNR = T < (2914 + 870) x (1.1 £ 0.6 L8 A e .

Mass oF ’rhe ISM shocked by a SN

tsnr ~ 1 X (8.8 +£7.9) x 107 yr.

(where n = 6 for silicate dust and 3 for a-C:H dust)

@ .. which yields lifetimes of
@ 30 - 1000 Myr for silicate dust

@ 20 - 500 Myr for carbonaceous dust Jones & Nuth (2011)
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The dust lifetime - a re-evaluation?

o Reforming IS silicates in the ISM? - does not appear to be easy

@ --> metallic films ( vacuum condensation )

® --> that do not match the extinction

@ Reforming IS carbons in the ISM? - ought to be possible

® --> possible via accretion?

@ --> but accretion onto silicates is inconsistent with polarisation data!

@ The dust ‘lifetime’ estimation
@ --> silicates "might” just be viable?
@ --> carbon grains have a tougher time!
@ --> 'lifetime’ estimation appears to be rather naive
@ --> would be better to look to the details of ISM mass exchange

Jones & Nuth (2011)
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@ cosmic ray processing time-scales

@ SiC & large PAHs (Nc > 1000 atoms) can survive for up fo t ~ 1000 Myr

® a-C:H particles can be dehydrogenated but only for t 2 100 Myr
@ small PAHs destroyed, crystalline silicates amorphised for t+ ¢ 70 Myr
@ shocks
@ He*/H* irradiation of silicates -> amorphisation, implantation & porosity
@ H'irradiation does not -> SiH or significant OH bond formation (< 1%)
@ heating of amorphous Fe-Mg silicates -> amorphous Mg-silicate + Fe nanoparticles
@ PAHs & a-C:H dust is “rapidly’ destroyed in shocks (Vs 2 100 km/s) and hot gas (T > 10° K)

@ produce abundant small grains through fragmentation in grain-grain collisions

Summary

o

@ the dust lifetime revisited (c.f dust injection time-scale of ~ 1000 Myr )

@ silicate life-time against shock destruction could be long t ~ 30-1000 Myr

® carbonaceous dust life-time is significantly shorter t ~ 20-500 Myr
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