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1 Evolution of the Visible and Hidden Star Formation 
What individual analyses tell about the star formation history? 

FUV FIR 

Dust 

Obviously the amount of UV light absorbed by dust is 
only measured at FIR wavelengths. Hence, to obtain an 
unbiased view of the cosmic star formation, it is crucial to 
treat the information of both FUV and FIR (and others). 

Now various multiwavelength survey data are available, 
and we can study the cosmic SF history a coherent and 
synthesized manner.  



(Takeuchi, Buat, & Burgarella 2005) 

Evolution of the FUV and FIR luminosity functions 



(Takeuchi, Buat, & Burgarella 2005) 

Directly observed SF 

Hidden SF 

The local fraction of the hidden SF is 50-60%, while the 
fraction at z=1 reaches more than 90%. 

Evolution of visible and hidden SF in the Universe 



Dusty era of the Universe 

Later works confirmed this “dusty era of the Universe”, 
and revealed that the dominance of the hidden SF 
continues even toward higher redshifts (z ~ 3) (e.g., 
Murphy et al. 2011). 

With a comparison between individual datasets from 
different bands, now we have a rough picture of the visible 
and hidden part of the cosmic SF. 



Dusty era of the Universe 

With a comparison between individual datasets from 
different bands, now we have a rough picture of the visible 
and hidden part of the cosmic SF. 

What is next? What does the different evolution at different 
wavelength mean?  

To answer this question, we need to model the dependence 
structure between UV and IR luminosities. 

Later works confirmed this “dusty era of the Universe”, 
and revealed that the dominance of the hidden SF 
continues even toward higher redshifts (z ~ 3) (e.g., 
Murphy et al. 2011). 



2 Bivariate Luminosity Function Analysis: Formulation 

It is very important to understand how we select sample 
galaxies and what we see in them. Each time we find 
some relation between different properties, we must 
understand clearly which is real (physical) and which is 
simply due to a selection effect.  

Structure of the sample is 
schematically described as 
the Venn diagram.  

To handle this problem, we 
need a UV-IR bivariate LF.  

Bivariate analysis: structure of the datasets 



Copula: a mathematical tool to combine marginal distributions 

Question: can we (re)construct a multivariate probability 
density function (PDF) from its marginals? 

Pougaza (2009) 



Obviously, there is an infinite number of degrees of freedom 
to choose the original PDF, because the dependence structure 
is not specified. 

Then, is this problem completely unsolvable?  

Copula: a mathematical tool to combine marginal distributions 



Obviously, there is an infinite number of degrees of freedom 
to choose the original PDF, because the dependence structure 
is not specified. 

Then, is this problem completely unsolvable?  

The answer is not entirely, if we can restrict or specify the 
dependence between variables. The tool  to deal with this 
problem is the copula, with a general form as follows: 

                                                                                                (1) 

where F1(x1) and F2(x2) are two univariate marginal 
cumulative distribution functions (DFs) and G(x1, x2) is a 
bivariate DF. 

Copula: a mathematical tool to combine marginal distributions 



Theorem: Sklar’s theorem  

Let G be a joint distribution function with margins F1 and 
F2. Then, there exists a copula C such that for all x1, x2,   

                                                                                              (2) 

This theorem guarantees that any bivariate DF with given 
margins can be expressed with a form of equation (2). This 
theorem also guarantees that if we fix F1, F2, and the 
dependence structure C, the bivariate DF is uniquely 
determined. 

Copula: a mathematical tool to combine marginal distributions 



Since the choice of copula is literally unlimited, we have to 
introduce a guidance principle. 

In many data analyses in physics, the most familiar 
measure of dependence might be the linear correlation 
coefficient ρ. Mathematically speaking, ρ depends not only 
on the dependence of two variables but also the marginal 
distributions, which is not an ideal property as a 
dependence measure. Even so, a copula having an explicit 
dependence on ρ would be convenient.  

In this work, we use a copula with this property, the 
Gaussian copula. 

Gaussian copula 



Let  

                                                                                                 (3) 

                                                                                                 (4) 

and 

                                                                                                 (5) 

                                                                                                 (6) 

Gaussian copula 



We then define a Gaussian copula CG (u1, u2; ρ) as 

                                                                                                    (7) 

The density of CG, cG, is obtained as 

                                                                                                    (8) 

The cumulative BLF constructed with the Gaussian copula is 
then expressed as 

                                                                                                    (9) 

The differential BLF is obtained by differentiating eq.(9).  

Gaussian copula 



The Gaussian BLFs: example 

The shape of the Gaussian copula BLF depends strongly on ρ.  

(Takeuchi 2010) 



Benefit of copula: incorporating observational selection effects 

Selection effect: always exists in any kind of astronomical data. 

In a bi(multi)variate analysis, there are two categories of 
observational selection effects. 

1.  Truncation 
 We do not know if a source would exist below a detection 
limit. 

2.  Censoring 
 We know there is a source, but we have only an upper 
(sometimes lower) limit for a certain observable. 

We have to deal with both of these selection effects to construct 
a BLF from observed data at the same time. We should be 
careful especially when we use multiwavelength datasets. 



Benefit of copula: incorporating observational selection effects 

With a copula BLF, we can take into account various kind of 
selection effects properly (even though the formulation is 
messy!). 



Using the Gaussian copula, now we can estimate the bivariate 
luminosity function (BLF). The visible and hidden SFRs should 
be directly reflected to this function.  

Dust is produced by SF activity, but also destroyed by SN blast 
waves as a result of the SF. Many physical processes are related 
to the evolution of the dust amount. Thus, first of all, we should 
describe statistically how it evolved.  

Local samples: IRAS, GALEX (UV, IR-selected) + redshifts (644) 
                          AKARI, GALEX (IR-selected) + redshifts (4086) 
                          (see A. Sakurai’s poster) 
High-z samples: Spitzer, GALEX (UV, IR-selected) + redshifts 
                             (z = 0.7, 1.0) (~ 350 for each redshift bin) 

3 Bivariate Luminosity Function Analysis: Result 
UV-IR bivariate LF from z = 0 to z = 1 



Copula likelihood for the BLF estimation 
Since we have already estimated the univariate LF at each 
band, we use these LFs as given marginals. We then estimate 
only one parameter, the linear correlation ρ by the likelihood 
below (j: upper limit flag, 0:detection, -1: upper limit). 

These terms are necessary 
to treat information from 
upper limits.	




The bivariate LF at z = 0 (IRAS-GALEX sample) 

    : FUV-sel 
    : FUV-sel (UL at FIR) 
    : FIR-sel 
    : FIR-sel (UL at FUV) 

Contour:  
Gaussian copula with the 
FUV and TIR LFs at z = 
0. 

ρ = 0.95±0.04 



The bivariate LF at z = 0 (AKARI-GALEX sample) 

    : FIR-sel 
    : FIR-sel (UL at FUV) 

Contour:  
Gaussian copula with the 
FUV and TIR LFs at z = 
0. 

ρ = 0.95±0.006 



The bivariate LF at z = 0.7 (Spitzer-GALEX sample) 

    : FUV-sel 
    : FUV-sel (UL at FIR) 
    : FIR-sel 
    : FIR-sel (UL at FUV) 

Contour:  
Gaussian copula with the 
FUV and TIR LFs at z = 
0.7. 

ρ = 0.91±0.05 



    : FUV-sel 
    : FUV-sel (UL at FIR) 
    : FIR-sel 
    : FIR-sel (UL at FUV) 

Contour:  
Gaussian copula with the 
FUV and TIR LFs at z = 
1.0. 

ρ = 0.85±0.05 

The bivariate LF at z = 1.0 (Spitzer-GALEX sample) 



Result from the copula BLF analysis 

In the Local Universe, the BLF is quite well constrained. 
It is rather impressive that the estimated correlation 
coefficient ρ is very high ~ 0.95, both from IRAS-GALEX 
and AKARI-GALEX datasets. 
The apparent scatter of the LFUV-LTIR is found to be due to 
the nonlinear shape of the ridge of the BLF. This bent 
shape of the BLF was implied by preceding studies (e.g., 
Martin et al. 2005). The copula BLF naturally reproduced 
this.  

At higher redshifts (z = 0.7-1.0), the linear correlation 
remains tight (ρ ~ 0.85-0.9) even though it is difficult to 
constrain the low-luminosity end from the data in this 
analysis (Spitzer-GALEX in the CDFS). It will be 
interesting to apply this method to better forthcoming 
data. 



1.  The copula method is an ideal tool to combine two (or more) 
marginal univariate LFs to construct a bi(multi-)variate 
LFs.   

2.  Copula is also useful to incorporate selection effects. 
3.  The Gaussian copula LF is sensitive to the linear correlation 

parameter ρ.  
4.  Even so, ρ in the copula LF is remarkably stable with 

redshifts (from 0.95 at z = 0 to 0.85 at z = 1.0). 
5.  This implies the evolution of the UV-IR bivariate LF is 

mainly due to the different evolution of the univariate LFs, 
and may not be controlled by the dependence structure. The data used in this work are not deep enough, but Herschel 

and ALMA data will improve the estimates drastically.   

To understand the visible and hidden star formation history 
in the Universe, it is crucial to analyze multiwavelength data 
in a coherent and synthesized manner.   

4 Summary 


