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Observers, theoreticians & experimentalists working 
together on understanding the dusty Universe
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Key Questions

• Where: Origin of Interstellar dust

• What: Inventory of interstellar dust

• How: key processes in its formation and 
evolution

• When: interstellar dust over the ages

• Why: do we care
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Dust Models
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Interstellar Dust:
what do we agree on ?

Grain size distribution:

Extinction & elemental abundances

•powerlaw distribution

•exponential cut off at large end

•50-3000 Angstrom, index -3.5

•mass in largest grains

•number density in small grains

IR emission

•5-50 Angstrom
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Let’s agree to 
disagree

Models: Very precise but highly inaccurate

Draine & Li, 2007, ApJ, 657, 810
Desert et al, 1990, A&A, 237, 215
Zubko et al, 2004, ApJS, 152, 211

and let’s do that at every conference
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Dust Models & SEDs
Peak wavelength of dust continuum 

sets Go

• PAH spectrum

•  “independent” of Go

• Relative strength sets PAH/dust ratio 
(qpah)

• VSG spectrum 

• Depends somewhat on Go

• Relative strength sets VSG/dust ratio

• Many assumptions differ between the 
models but each model provides a 
convenient framework to compare 
different sources “quantitively”

Desert model
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Models & Observed Trends

Observed variations – eg., in IRE 
strength – can be translated into 
trends in size distribution 
variations

Details are highly 
model sensitive

Draine & Li model
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Use them for what they 
are worth
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Models for Dust Evolution
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Cosmic Journey of Interstellar Dust

Stellar death
Dust formation:
Chemical nucleation,
growth, agglomeration

Stellar evolution
nucleosynthesis

Intercloud medium
Dust destruction: 
Shock sputtering
Processing by UV, X-rays, &
cosmic raysCloud phase 

Chemical mantle growth
Thermal processing

Star formation
Nebular processing, 
Jet processing
X-ray processing
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Many complex processes which are partly 
studied, poorly understood, and incompletely 
incorporated into astronomical models

Focus here on dust destruction
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The issue: 
Dust lifetime ~ 500 Myr

Stardust injection timescale ~ 2000 Myr

Most of the dust is formed in the ISM 
and the role of stardust is rather limited

Stardust rules !

Dust, what dust ?
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Dust destruction:
What do we agree on ?

• Supernovae shocks destroy 

dust grains through 

sputtering and shattering

• not very efficient process: 

~10% destruction for 100 

km/s shock

• Cumulative effect
Barlow & Silk, 1977, ApJ, 211, L83
Dwek & Scalo, 1979, ApJ, 233, L81; 1980, ApJ, 239, 193
Draine & Salpeter, 1979, ApJ, 231, 77 & 438
Jones et al, 1994, ApJ, 433, 797; 1996, ApJ, 469, 740
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Shock Processing
Dust: inertial motion + betatron 
acceleration

Sputtering & shattering

Jones et al, 1994, ApJ, 433, 797; 1996, ApJ, 469, 740
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Dust Lifetime

Need:

• Supernova rates

• Dust destruction efficiencies

• SNR evolution

Bottom line: “cumulative lifetime” is 600 and 400 Million years 
for graphite and silicate grains, respectively
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INTERSTELLAR SHOCKS

• Shocks in the WNM destroy dust 
grains through sputtering

• 100 km/s shock “chips” 30 Å layer 
from a 1000Å grain

• Reaccretion in diffuse clouds 

• Calculated ‘lifetime’: ~500 Myr

Jones et al, 1994, ApJ, 433, 797
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Theoretical View

• Stardust is rapidly destroyed

• Most dust is formed by accretion/chemistry 
in the ISM

18



Depletion Patterns

Physical and Chemical Processes

• Condensation in stellar ejecta

• Sputtering in interstellar 
shocks

• Grain cores & mantles

• Sticking

• Surface chemistry 

Field 1974, ApJ, 187, 453
Snow 1975, ApJ, 202, L87
Barlow 1978, MNRAS, 183, 397
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Shocks, Depletion & Mantles
• Large variations in depletion 

between intercloud and 
cloud phases

• Shock destruction in 
intercloud phase

• Accretion in cloud phase

• Rapid cycling between the 
phases: ~100 Myr

References:
Savage and Sembach, 1996, ARAA, 34, 279
Cartledge et al., 2006, ApJ, 641, 327
Tielens 1998, ApJ, 499, 267; 2009 Astrophysics in the next decade
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Shocks, Depletion & Mantles
• Elemental depletion patterns 

reflect sputtering in 
supernova shocks and re-
accretion in diffuse clouds

• Thin layer/mantle (“veneer”) 
is sputtered off and accreted 
on again but most of the 
core survives

• Oxygen involved in veneer 
but carbon is not

References:
Savage and Sembach, 1996, ARAA, 34, 279
Cartledge et al., 2006, ApJ, 641, 327
Tielens 1998, ApJ, 499, 267; 2009 Astrophysics in the next decade
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Depletion Patterns

>10% of the elements are injected by non-dust-stellar sources
but depletion of Ca, Fe, Ti is ~90–99.9%

Jura 1987, Interstellar Processes
Barlow 2009, Astrophysics in the next decade

interstellar dust as vacuum cleaner
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Oxide Mantle Formation

• Chemistry of surface interaction in diffuse ISM 
largely unexplored

• Formation of volatile hydrides vs coordination 
complexes vs salts

• Photodesorption 

• Electron recombination 

• Bottom line: some elements rapidly deplete out 
(Fe, Ti, Ca, ...) others are not involved (Na, K, Zn, 
S, N, C, ...)
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Carbon Depletion
• Some observational contradictions:

• No variation in the diffuse cloud/intercloud depletion 
(eg., typically shocked to 100 km/s)

• Very low depletion in ζ Ori high velocity (100 km/s) 
gas

• How can we reconcile these observations ?

• preshock gas in ζ Ori is HIM with n~10-3 cm-3 

• My interpretation: C-depletion is historical: reshocked 
or rejuvenated SNR

Welty et al, 2002, ApJ, 579, 304
Sofia et al, 1997, ApJ, 482, L105
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Destruction in SNR

2-phase medium: 200 Å grains are destroyed in 750 million years
3-phase medium: 200 Å silicate/graphite grains are destroyed in 

1/4.5 billion years
Jones et al, 1994, ApJ, 433, 797
Tielens, 2005, Physics and Chemistry of the ISM
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Destruction in SNR

• Destruction sensitive to model for SNR evolution
• ζ Ori high velocity cloud: rejuvenation & reprocessing of SNR material 

and carbon grains < 200A & silicate grains > 1000A
Jones et al, 1994, ApJ, 433, 797
Tielens, 2005, Physics and Chemistry of the ISM
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Carbon Sputtering
• Amorphous carbon versus graphite sputtering

• New SRIM calculations predict much higher sputtering yields for 
amorphous carbon

• Note: (interstellar) carbon sputtering was ‘always’ amorphous 
carbon sputtering

• There is no graphite sputtering !

• H beam transforms graphite into amorphous carbon

• Difference in calculations reflects 

• difference in angle of incidence dependence

• mass of sputtered atom

Serra-Diaz & Jones, 2008, AA, 492, 127
Tielens et al, 1994, ApJ, 431, 321

27



Low E Carbon Sputtering

• Experiments: Chemical 
sputtering at low E

• T-dependent

• SRIM calculations fail

• MD calculations are 
becoming feasible
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Carbon: Bottom Line

• Don’t trust observations blindly

• Don’t trust experiments blindly

• Don’t trust SRIM

• Can we trust MD ?

• ...
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Dust and Depletion
• Silicates: 

• Large grains (>1000A)

• Sputtered in WNM/WIM

• Reaccrete oxide surface layer (chemistry ??) in CNM

• Never fully destroyed (in SNR)

• Carbon:

• Small grains (<200 A)

• Not affected in WIM/WNM

• Fully destroyed in SNR
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Interstellar Hydrocarbon Solids
Hydrogenated amorphous carbon

• ~10% elemental C
• observed in 

• diffuse ISM
• not in molecular clouds
• GL 618

• Origin
• Carbon soot
• Shock processed carbon soot
• H/UV processed carbon soot

• Surface layer ?

Mennella et al, 2002, ApJ, 569, 531
Schnaiter et al, 1999, ApJ, 519, 687
Chiar et al, 1998, ApJ, 507, 281
Tielens et al 1994, 431, 321
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Carbonaceous Dust

Composition:

•IR absorption features 
imply Hydrogenated 
Amorphous Carbon

Processing:

•Photobleaching & 
thermal H-reactions

•Ions in shocks

nanodiamonds

fullerenes
graphite

PAHs

Interstellar carbon dust

carbon soot

soot surface layer ??
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Energetic Ion Interaction with PAHs
• Shock waves: (50eV/nucleon)

• Hot plasma’s in supernova 
remnants & galactic winds (0.5k 
eV)

• Cosmic Rays (10MeV/nucleon)

• Ion interaction with PAHs

- Charge exchange

- Electronic stopping

- Fragmentation

Postma et al 2010, ApJ, 708, 435 33



PAH Destruction
•Lifecycle of 

Interstellar PAHs

Timescales estimated by 
extrapolating solid state 
concepts into the molecular 
domain

• Formation C-rich AGB stars

• Timescale ~ 2 Byr

• Shocks/Cosmic Rays

• Timescale ~ 100 Myr

• UV photolysis

• Timescale ~ 100 Myr

• Reaction rates are poorly known 
for large PAHs Micelotta et al, 2010, A&A, 510, A36+; 510, A37+; 526, A52+

34



Shattering of Carbon Grains

• Grain-grain collisions will produce 
shattered fragments

• Graphite/soot

• P~50 kbar, v~1km/s

• Smallest sizes may be graphene/PAH-
sheets

• Hydrogenated Amorphous Carbon 
may lead to aliphatic/aromatic 
cage-like structures

Jones et al, 1996, ApJ, 469, 740

35



Organic Grain Mantles

• Model: accreted ice mantles are UV/ion processed 
to organic goop in dense clouds

• General experimental support

• Observational: no support

• Would have to completely graphitize and this has 
never been observed in the lab

• My interpretation: Ices and molecular cloud 
material do not play a role in dust formation in ISM
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Summary
• Emission models are as good as you trust them

• Dust in the Milky Way is highly processed

• Large silicate grains: 

• Shock processing: 100 km/s shock every 100 Myr

• Sputtering/accertion of oxide-veneer in intercloud/cloud medium

• Small carbon grains: 

• ‘Unaffected’ by 100 km/s shocks

• PAHs: 

• Lost in 100 Myr

• Replenished by shattering

• Dust lifetime issues are resolved by accretion/shattering37



Oh, what a tangled web I weave 
when I deceive ?!
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Key Questions
• Chemistry of mantle formation ?

• Properties of mantles ?

• Are there separate oxide and carbonaceous grains 
& chemistry ?

• Formed by accretion versus processing ?

• What about the silicate feature ?

• What about the 2175 A bump, the aliphatic 
features & HAC ?

• What are true dust probes at high z ?
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Take Home Message for 
this Audience

• Dust properties will reflect ISM processing

• Dust properties will vary from one phase 
to another

• High redshift dust may be quite similar or 
very different from what we observe locally

• The properties of dust are only limited by 
our imagination
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Dust as a Tracer of Stardust Sources
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Dust Inventory of the ISM
• Silicates: 

• Amorphous FeMg-silicates

• Forsterite

• Enstatite

• Montmorillonite ?

• Oxides:
• Corundum

• Spinel

• Wuestite

• Hibonite

• Rutile 

• Sulfides:

• Magnesium sulfide

• Iron sulfide ?

• Ices 

• Simple molecules such as 
H2O, CH3OH, CO, CO2

• Carbides:
• Silicon carbide
• Titanium carbide
• And others

• “Pure” Carbonaceous compounds:
• Graphite
• Diamonds
• Hydrogenated Amorphous 

Carbon
• Polycyclic Aromatic Hydrocarbons
• Fullerenes

• Others:
• Silicon nitride 
• Metalic iron ??
• Carbonates ?
• Silicon (??), silicon dioxide 
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Dust Composition in ULIRGs


 Starburst environments: 


Crystalline silicates and HAC in 

ULIRGs

• “excess” dust from Red Supergiants, 
Luminous Blue Variables, Supernovae 
and Protostars

• Differences in supernova processing

• Differences in cosmic ray processing

Armus et al, 2007, ApJ,656, 148
Spoon et al, 2006, ApJ, 638, 759
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Dust in AGN/Quasars Winds
Oxides and crystalline silicates

Formed in torus and ejected in 
quasar wind ?

Marwick-Kemper et al., 2007, ApJ,668, L107 
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Tracing Dust Sources 
through Spectroscopy

• JWST will probe SN/LBV dust formation 
within 50Mpc

• JWST can probe in glorious detail 
characteristics of dust in AGN 
environments
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