The Role of Dust in the Early Universe

D. Yamasawa (Hokkaido University)

■ collaborators:

A. Habe (Hokkaido University)

T. Kozasa (Hokkaido University)

T. Nozawa (IPMU, University of Tokyo)

H. Hirashita (Academia Sinica)

H. Umeda (University of Tokyo)

K. Nomoto (IPMU, University of Tokyo)

■ references:

I: Protogalaxy Evolution (DY+ 2011, ApJ, 735, 44)

II: Reionization (in prepalation)

Table of Contents

I: Protogalaxy evolution (DY+ 2011, ApJ, 735, 44) INTRODUCTION Role of Dust in SF Our study MODEL Dust Evolution Galaxy One-zone Model RESULTS Galaxy Evolution SFE vs. DM Halo Mass II: Reionization INTRODUCTION MODEL RESULTS

III: SUMMARY

Role of Dust in Star Formation

- H₂ molecule is dominant coolant in the early Universe :
- Stars form in cool dense gas that is formed by H₂ cooling.

H₂ formation on dust is very quick than gas phase :

- Dust is catalyst in H₂ formation.
- H₂ formation is due to collisions of hydrogen atoms to dust surface.
- The collsion rate depends on dust size, dust-to-gas mass ratio,Tgas, and pgas.

Dust size distribution in high redshift (z > 5) :

- This is different from Milky Way dust.
- This is because dominant dust origin is SNe.

Our Study

- We investigate time evolution of dust mass and dust size distribution in high z Universe, considering the dust production by SNe and dust destruction by sputtering in the high-velocity shocks driven by SNe.
- We consistently treat following processes in our one-zone model
 (i) the formation and size evolution of dust,
 - (ii) the chemical reaction networks including H₂ formation

both on the dust grains and in gas phase,

- (iii) gas cooling and heating
- (iv) the SFR based on H₂ mass.

MODEL

Dust Evolution (1/2)

Dust in the early Universe :

SNe II are the source of dust in the early Universe (5 < z < 10)

(Dwek+ 07; Gall+ 2011a, b, c; but see also Valiante+09; Dwek&Cherchneff 11; Valiante+11)

- Average size of SN dust is small.
- Dust injected from SN II into ISM through a reverse shock :

A reverse shock destroys dust.

This is more efficient in large n_{SN}.

Dust Evolution (2/2)

Formulation of dust size evolution :

 $\overline{\Delta M_{\mathrm{SN,d},j}}(a)$: The mass injected into ISM through a reverse shock per SN (Nozawa+ 07)

 $\eta_j(a,a')$: The conversion efficiency for dust grains in ISM through a forward shock (Nozawa+ 06)

a' : a radii before the destruction

a : the radii after the destruction

MODEL

Galaxy One-zone Model (①/2)

Dark matter halo and physical state of gas :

- We assume (i) the DM halo as a singular isothermal sphere and (ii) the baryonic gas as a uniform, rotating gas disk
- Initial gas temparature : T = T_{vir} $T_{vir} \equiv \frac{G\mu m_{\rm H} M_{\rm vir}}{3k_{\rm B}r_{\rm vir}},$

• A rotation timescale,
$$t_{cir}$$
: $t_{cir} \equiv \frac{2\pi r_{disk}}{v_c}$.

$$n_{\rm H} = \frac{M_{\rm H}}{\pi r_{\rm disk}^2 2H m_{\rm H}}.$$
 (16)

the typical volume of the galaxy

r_{disc} : the radius of disk (Mo+ 98, λ = 0.04) H : the typical scale height of Tgas (Shakura & Sunyaev 88)

$$H = \sqrt{2} \frac{v_{\rm s}}{v_{\rm c}} r_{\rm disk} = \left(\frac{2T}{3T_{\rm vir}}\right)^{\frac{1}{2}} r_{\rm disk}$$

A star formation law based on H₂:

$$\Psi(t) = \frac{f_{\rm H_2}(t)M_{\rm H}(t)}{t_{\rm cir}(z_{\rm vir})},$$
(18)

 f_{H2} : the molecular fraction $f_{H2} \times M_H$: the mass of H_2 in the galaxy

(11)

MODEL

Galaxy One-zone Model (2/2)

Chemistry and cooling :

• the time evolution of H_2 fraction, f_{H2} :

$$\frac{\mathrm{d}f_{\mathrm{H}_2}}{\mathrm{d}t} = \left[\frac{\mathrm{d}f_{\mathrm{H}_2}}{\mathrm{d}t}\right]_{\mathrm{gas}} + \left[\frac{\mathrm{d}f_{\mathrm{H}_2}}{\mathrm{d}t}\right]_{\mathrm{dust}} + \left[\frac{\mathrm{d}f_{\mathrm{H}_2}}{\mathrm{d}t}\right]_{\mathrm{dest}} + \left[\frac{\mathrm{d}f_{\mathrm{H}_2}}{\mathrm{d}t}\right]_{\mathrm{UV}} + \left[\frac{\mathrm{d}f_{\mathrm{H}_2}}{\mathrm{d}t}\right]_{\mathrm{star}}, \quad (22)$$

H₂ formation on dust grains

- cooling ($\rm H_{2}$, H, H^{+} , $\rm C_{I}$, $\rm C_{II}$, $\rm O_{I}$) and heating (photoheating)

Formation of molecular hydrogen on dust grains :

$$\begin{bmatrix} \frac{\mathrm{d}f_{\mathrm{H}_2}}{\mathrm{d}t} \end{bmatrix}_{\mathrm{dust}} = 2R_{\mathrm{dust}}\mathcal{D}n_{\mathrm{H}}f_0 \qquad R_{\mathrm{dust}}(a)\mathcal{D} = \sum_j \int_0^\infty \left(\frac{3m_{\mathrm{H}}\bar{v}S}{8a\rho_j}\right) \left(\frac{4\pi a^3\rho_j f_j(a)}{3n_{\mathrm{H}}m_{\mathrm{H}}}\right) \mathrm{d}a.$$

$$= \sum_j \int_0^\infty f_0 f_j(a)\pi a^2 \bar{v}S \mathrm{d}a \qquad \mathbf{a} : \mathrm{radius of dust} \qquad \mathbf{a} : \mathrm{r$$

RESULTS

Galaxy Evolution

 The dust destruction by the reverse shocks is very effective and suppresses H₂ formation on dust grains.

RESULTS SFE vs. DM Halo Mass

■ SFR is very suppresed in our model with dust desruction, and stellar mass fraction is very low at t~0.8 Gyr. note : SFE can be well characterized by stellar mass fraction.

Table of Contents

I: Protogalaxy evolution INTRODUCTION MODEL RESULTS CONCLUSIONS

(ApJ in this July)

II: Reionization INTRODUCTION Reionization in the Universe Our Study MODEL Pop III.1 and Pop III.2 Reionization RESULTS The Effects of Dcrit on Reionization

III: SUMMARY

Reionization in the Universe

- Observational constraints on reionization :
- Gun-Perterson test : reionization for z > 6

Reionizating photons :

• Most of the reionization radiation is expected to come from galaxies less than $\sim 10^{9.5}$ Msun.

Star formation efficiency (SFE):

• The stellar mass fraction, $M_{star} / (M_{gas} + M_{star})$, is assumed to be constant independent of M_{vir} in previous analytic works.

Our Study

- We study reionization by our one-zone protogalaxy model which includes dust production and dust size evolution.
- Because of H₂ formation rate on dust grains decreasing, SFE decreases with small dark matter halo mass.

Pop III.1 and Pop III.2

Critical dust-to-gas mass ratio, D_{crit} :

• We assume the IMF transition from Pop III to Pop II due to dust cooling. (Schneider+ 03; Omukai+ 05; Schneider+ 06;

Schneider and Omukai 10; Omukai+ 10)

IMF transition :

dust cooling

(Omukai+ 05)

Dust	DM halo	IMF	SFR
D < D _{crit}	T _{vir} < 10000 K	Pop III.1(<u>100 - 500</u> M _{sun})	(Machacek+ 03)
	T _{vir} ≧ 10000 K	Pop III.2(<u>10 - 100</u> M _{sun})	$\Psi(t) = \frac{f_{\rm H_2}(t)M_{\rm H}(t)}{t_{\rm H}(t)}$
$D \geqq D_{crit}$		Pop II (<u>0.1 - 60</u> M _{sun})	(Our model)

all slope index : -2.35

Reionization

Ionizing photons, n_{ion}, emitted by massive stars :

$$\frac{1}{n_{\rm b}} \frac{dn_{\rm ion}(z)}{dz} = \frac{1}{\rho_{\rm m}} \frac{\Omega_{\rm m}}{\Omega_{\rm b}} f_{\rm esc} \underline{\eta_{\rm ion}} \Psi_*(z) \left| \frac{dt}{dz} \right|$$

$$cosmic SFR (per Mpc^3)$$

 n_{ion} : comoving density of ionizing photons f_{esc} : escape fraction η_{ion} : number of ionizing photons emitted per stellar baryon

 ionizing photon number per stellar mass for Pop III.2 stars is 10 times larger than that for Pop II stars (Schaerer 02).

• Pop III.2 stars are very effective to the reionization.

Evolution of ionized volume fraction, Q_{ion} : $\frac{dQ_{ion}(z)}{dz} = \frac{1}{n_b} \frac{dn_{ion}(z)}{dz} - \alpha_B n_b C(z) Q_{ion}^2(z) (1+z)^3 \left| \frac{dt}{dz} \right|$ ionization
recombination Q_{ion} : volume fraction of ionizing regions α_B : recombination coefficient

C(z) : clumping factor

Reionization and Dcrit

 Small Dcrit → early transition from Pop III to Pop II → late reionization epoch note: ionizing photon per Pop III mass > ionizing per Pop II mass

Reionization and Dcrit

A : Pop III.2 : $f_{esc} = 10\%$, Pop II : $f_{esc} = 30\%$ (Greif and Bromm 06) B : Pop III.2 : $f_{esc} = 50\%$, Pop II : $f_{esc} = 60\%$ (Wise and Cen 09, cosmological) C : Pop III.2 : $f_{esc} = 70\%$, Pop II : $f_{esc} = 80\%$ (Wise and Cen 09, isolated)

• In the cases of $D_{crit} > 10^{-5}$, reionization occurs at z > 6 independent of escape fraction, f_{esc} .

SUMMARY

I: Protogalaxy Evolution :

We conclude that

the amount and the size distribution of dust

strongly affects the evolution of galaxies in the early Universe,

since SF activity depends on H_2 formation on dust grains.

 We show that H₂ formation is suppressed by the dust destruction, especially by the reverse shocks in SNRs.

II. Reionizarion :

We study reionization by our galaxy model and find that, in the cases of $D_{crit} > 10^{-5}$, reionization occurs at z > 6 independent of other parameters.

 This result show that study of critical dust-to-gas mass ratio is very important for reionization process.