String Inflation: Why?

Convoluted models walk the Planck

Outline

- Context: Occam vs Wilson
 - Why build models only a mother could love?
- Some UV sensitive issues
 - Naturalness;
 - Large field excursions and tensor modes;
 - Robustness
 - Reheating vs insulation; mind broadening; initial conditions; ...
- A tentative scorecard

- Context: Occam vs Wilson
 - Why build models only a mother could love?
- Some UV sensitive issues
 - Naturalness;
 - Large field excursions and tensor modes;
 - Robustness
 - Reheating vs insulation; mind broadening; initial conditions; ...
- A tentative scorecard

- Context: Occam vs Wilson
 - Why build models only a mother could love?
- Some UV sensitive issues
 - Naturalness;
 - Large field excursions and tensor modes;
 - Robustness
 - Reheating vs insulation; mind broadening; initial conditions; ...
- A tentative scorecard

Planck 2013

String cosmology involves complicated constructions (extra dimensions, wrapped branes, fluxes, gaugino condensation, supersymmetry, ...)

eg:

$$K = -2\ln V = -2\ln(\tau_1^{3/2} - \tau_2^{3/2})$$

$$W = W_0 + A_1 e^{a_1 T_1} + A_2 e^{a_2 T_2}$$

Divided by a common language

Humped Zebra Crossing

Divided by a common language

• Occam:

• Wilson:

• Occam: What is the simplest possible model that the data requires?

• Wilson:

• Occam: What is the simplest possible model that the data requires?

• Wilson: Low energy limit is often messy. What is generic and stable?

eg SUSY vs simple dark matter model

• Occam: What is the simplest possible model that the data requires?

• Wilson: Low energy limit is often messy. What is generic and stable?

Why embed into UV theory? *Conceptual* problems of simple models often require it...

Planck 2013

Primordial fluctuations

The problem: how to generate correlations over scales that were super-Hubble in size?

Usual way out: *is the extrapolation wrong?*

Possible solution: *the expansion could have accelerated...eg a bounce*

Possible solution: *the expansion could have accelerated...eg inflation*

But: can and why should it bounce?

But: can and why should inflation start or end?

Some problems best addressed with a UV completion:

If a bounce, why is the bounce semi-classical? Why does inflation start or end? Why are scalars light (why scale invariant)? What does one do with a landscape/multiverse? Why doesn't trans-Planckian physics intrude? Why doesn't energy dissipate? Why aren't initial conditions important? and so on....

Inflation: *impressive phenomenology seeking a fundamental theory (on the edge of the quantum gravity regime) within which to sit;*

Inflation: *impressive phenomenology seeking a fundamental theory (on the edge of the quantum gravity regime) within which to sit;*

String Theory: an impressive fundamental theory seeking experimental consequences to test

Rocky Kolb

Happy Valentine's Day !

Inflation and strings were made for each other. - Cliff Burgess

From Physical Review D Personal ads:

Mature paradigm with firm observational support seeks a fundamental theory in which to be embedded. No loop quantum gravity theories, please. Contact alan@mit.edu. Elegant theory of everything desires to explore the landscape with a phenomenon in the hope that it will lead to a prediction. Let's get physical! Contact ed@ias.edu.

Superficially easy to find inflation in string theory:

It has many 4D scalars. (eg: brane positions; moduli)

$$g_{mn}(x) = g_{mn}(\alpha^i; x)$$

Superficially easy to find inflation in string theory:

It has many 4D scalars; supersymmetry can give these very flat potentials

Superficially easy to find inflation in string theory:

- It has many 4D scalars; supersymmetry can give these very flat potentials;
- BUT: a convincing case for inflation requires reliably knowing the potential that stabilizes *all* moduli

Giddings, Kachru & Polchinski Kachru, Kallosh, Linde & Trivedi

It has become possible to compute the low-energy potential for *all* moduli for some string constructions since around 2000.

Giddings, Kachru & Polchinski Kachru, Kallosh, Linde & Trivedi

It has become possible to compute the low-energy potential for *all* moduli for some string constructions since around 2000. First done for Type IIB vacua

Key ingredients: D3 and D7 branes & orientifolds Fluxes sourced by these branes, wrapping extra dimensions

- Context: Occam vs Wilson
 - Why build models only a mother could love?
- Some UV sensitive issues
 - Naturalness;
 - Large field excursions and tensor modes;
 - Robustness
 - Reheating vs insulation; mind broadening; initial conditions; ...
- A tentative scorecard

- Naturalness (why are scalars light?)
- Trans-Planckian fields and tensor modes?
- Robustness
 - Multiple scalars and non-Gaussianity
 - Decoupling vs trans-Planckianism?
- Reheating
- Mind broadening

It is unusual to find scalars that are systematically lighter than the other scales in the problem: *ways out: supersymmetry, goldstone symmetry*

It is unusual to find scalars that are systematically lighter than the other scales in the problem: *ways out: supersymmetry, goldstone symmetry*

Slow-roll condition $M^2 V'' \ll V \sim \mu^4$ means inflation requires scalar is *extremely* light: $m \ll H \sim \mu^2/M$

Unusually: sensitive even to 'Planck slop':

if $L \supset V_0$ then what forbids $L \supset V_0 \varphi^2 / M^2 \sim H^2 \varphi^2$?

So far as we can tell inflation seems no easier to get in string theory than for generic field theories

But we also tend only to seek inflation in a regime with strings well-described by a field theory anyway.

Brandenberger & Vafa

So far as we can tell inflation seems no easier to get in string theory than for generic field theories

But we also tend or with strings well-de Some exceptions, like string-gas cosmology, but the good news (*you leave the field theory limit*) is also the bad news (*hard to calculate reliably because have left the field theory limit*)
So far as we can tell inflation seems no easier to get in string theory than for generic field theories

Scalars can be light, usually by exploiting known mechanisms (like super- or Goldstone-symmetries)

de Sitter space tends to ruin supersymmetry, so often find inflaton as pseudo-Goldstone bosons

A CONTRACTOR OF A CONTRACTOR OF

So fa	SUSY often combines two types of pGB:
strin	$X = e^{\varphi} + ia$
Scala	where:
these	- <i>a</i> is an axion: in G/H with G compact
de Si	$V(a) = V_0 + V_1 \cos(a/f) + \cdots$
find	with $f \sim M_s \ll M_p$

Freese, Frieman & Olinto

So fa strin	SUSY often combines two types of pGB: $X = e^{\varphi} + ia$
Scala these de Si	where: - <i>a</i> is an axion: in G/H with G compact $V(a) = V_0 + V_1 \cos(a/f) + \cdots$ with $f \sim M_s \ll M_p$
Inflation requires $f \gg M_p$	

So fa strin	SUSY often combines two types of pGB: $X = e^{\varphi} + ia$
Scala these de Sa	where: - a is an axion: in G/H with G compact $V(a) = V_0 + V_1 \cos(a/f) + \cdots$ with $f \sim M_s \ll M_p$
find	- ϕ is a modulus: in G/H with G noncompact $V(\phi) = V_0 + V_1 e^{-\phi/f} + \cdots$ with $f \sim M_p$

BMQRZ th/0111025

s of pGB: Arises, eg, as radius of extradimensional cycle: $r = \ell e^{\varphi/f}$ with energy given as series in 1/r given a kinetic term $L = M^2 [R + (\partial r/r)^2]$ compact Calculable regime: $r \gg \ell$ and so $\phi \gg f$ + ••• $r_s \sim r_p$ VVUUTU de Si find - ϕ is a modulus: in G/H with G noncompact $V(\varphi) = V_0 + V_1 e^{-\varphi/f} + \cdots$ with $f \sim M_p$

Goncharov & Linde

Inflation requires $\varphi \gg f$ which is the same as the calculable regime; with no condition on size of f.

compact) + …

s of pGB:

BUT inflation also requires $V_0 \neq 0$

VVUUIU

de Si find

- ϕ is a modulus: in G/H with G noncompact $V(\phi) = V_0 + V_1 e^{-\phi/f} + \cdots$ with $f \sim M_p$

 $\frac{I'I}{S} \rightarrow \frac{I'I}{D}$

Should take pGB potentials very seriously!!

In particular exponential potentials:

$$V(\varphi) = V_0 (1 - e^{-k\varphi} + \cdots)$$

so
$$\epsilon = e^{-2k\varphi} \text{ and } \eta = e^{-k\varphi}$$

so slow roll is same as large field

Should take pGB potentials very seriously!!

In particular exponential potentials:

$$V(\varphi) = V_0 (1 - e^{-k\varphi} + \cdots)$$
so
$$\epsilon = e^{-2k\varphi} \text{ and } \eta = e^{-k\varphi}$$
since $\varepsilon \sim \eta^2$ get prediction $r \sim (n_s - 1)^2$

Martin, Ringeval & Vennin 2013

Exponentials do well in comparison of models

Martin, Ringeval & Vennin 2013

Why some do better than others

Starobinsky Bezrukov & Shaposhnikov

Do string vacua also give R^2 or Higgs-type inflation? $L = M^2 R + \gamma R^2 + \frac{R^3}{M^2} + \cdots$ with $M = M_p$ and $\gamma \gg 1$?

Starobinsky Bezrukov & Shaposhnikov

Do string vacua also give R^2 or Higgs-type inflation? $L = M^2 R + \gamma R^2 + \frac{R^3}{M^2} + \cdots$ with $M = M_p$ and $\gamma \gg 1$?

Actually do get curvature expansions, but usually with M_s everywhere, so do not get unusually large R^2 term.

Starobinsky Bezrukov & Shaposhnikov

Do string vacua also give R^2 or Higgs-type inflation? $L = M^2 R + \gamma R^2 + \frac{R^3}{M^2} + \cdots$ with $M = M_p$ and $\gamma \gg 1$?

Actually do get curvature expansions, but usually with M_s everywhere, so do not get unusually large R^2 term. But Higgs and R^2 inflation can also be regarded as exponential potentials, which seem easier to get.

- Naturalness (why are scalars light?)
- Trans-Planckian fields and tensor modes?
- Robustness
 - Multiple scalars and non-Gaussianity
 - Decoupling vs trans-Planckianism?
- Reheating
- Mind broadening

Early models tend to share a preference for small r

J. Polchinski ICHEP 08 summary talk

Early models tend to share a preference for small *r*

J. Polchinski ICHEP 08 summary talk

Early models tend to share a preference for small r

J. Polchinski ICHEP 08 summary talk

Early models tend 0.25 Tensor-to-Scalar Ratio (r0.002) 0.05 0.00 0.94 Pr

Usually large r corresponds to large excursions in field space

 $\Delta \phi > M_p (r/4\pi)^{1/2}$

In examples these turn out to require things like branes rolling further than extra dimensions are large.

J. Polchinski icher us summary taik

Lyth

Early models tend 0.25 Tensor-to-Scalar Ratio (r0.002) 0.05 0.00 0.94 Pr

Clearly large fields are not in themselves impossible to get, as the exponential potentials show: $r = \ell e^{\varphi/f}$ These start life as flat directions so large fields cost little energy (and so make sense in an EFT).

But how to inflate? $V \neq V_0 + \cdots$

J. Polchinski icher us summary taik

Silverstein & Westphal McAllister, Silverstein & Westphal Conlon

J. Polchinski ICHEP 08 summary talk

Field-theoretic mechanisms exist for getting larger f (and so also larger tensors), such as 'alignment' mechanisms. $V(\varphi_1, \varphi_2) = U_1(a\varphi_1 + b\varphi_2)$ $+U_1(c\varphi_1 + d\varphi_2)$ By ensuring $f > M_p$ these can reproduce predictions of simple $m^2 \varphi^2$ models because $\varphi/f \ll 1$ Kim, Niilles & Peloso Kappl, Krippendorf & Nilles

nce for small *r*

J. Polchinski ICHEP US summary talk

- Naturalness (why are scalars light?)
- Trans-Planckian fields and tensor modes?
- Robustness
 - Multiple scalars and non-Gaussianity
 - Decoupling vs trans-Planckianism?
- Reheating
- Mind broadening

Brandenberger & Martin

Do observers need to worry about any of this?

- If inflation stretches scales, why doesn't it also stretch unknown trans-Planckian physics to observable scales?

Do observers need to worry about any of this?

- If inflation stretches scales, why doesn't it also stretch unknown trans-Planckian physics to observable scales?

String physics in string theory seems to decouple...

McAllister et al

Do observers need to worry about any of this?

- If inflation stretches scales, why doesn't it also stretch unknown trans-Planckian physics to observable scales?

String models often have many light scalars if they have one: should we generically expect nongaussianity and isocurvature perturbations?

'Racetrack 8'

Do observers need to worry abo

- If inflation stretches scales, unknown trans-Planckian phy scales?

String models often have man

have one: should we generically expect nongaussianity and isocurvature perturbations?

Multi-field models usually are moving along targetspace geodesics near horizon exit so are usually effectively single field models...

- Naturalness (why are scalars light?)
- Trans-Planckian fields and tensor modes?
- Robustness
 - Multiple scalars and non-Gaussianity
 - Decoupling vs trans-Planckianism?
- Reheating
- Mind broadening

UV Issues: reheating

Does string theory have anything useful to say about reheating?

in principle it should eventually, once we have a single model that both inflates and contains the Standard Model....

UV Issues: reheating

Sarangi & Tye Copeland, Myers & Polchinski

Does string theory have anything useful to say about reheating?

In principle it should eventually, once we have a single model that both inflates and contains the Standard Model....

Can bring surprises like post-inflationary cosmic string production, ...

UV Issues: reheating

Barnaby, CB & Cline,

Does string theory have anythi reheating?

strings already show why studies of a single inflaton oscillating while coupled to SM fields may be inadequate: *a good furnace is not adequate to reheat if you do not also have good insulation. Must know ALL the degrees of freedom at the relevant energies*

- Naturalness (why are scalars light?)
- Trans-Planckian fields and tensor modes?
- Robustness
 - Multiple scalars and non-Gaussianity
 - Decoupling vs trans-Planckianism?
- Reheating
- Mind broadening

UV Issues: mind-broadening

Some novel features to string-motivated models:

CB, Majumdar, Nolte, Rajesh, Quevedo & Zhang

Inflaton field might not even exist in our present-day world (such as if it describes the distance between a brane-antibrane pair that annihilate at the end of inflation)

Silverstein & Tong,

Slow roll need not be inconsistent with relativistic kinematics (such as in DBI inflation)

 $\mathcal{L}_{\text{DBI}} = -f(\phi)^{-1} \sqrt{1 - 2f(\phi)g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi} + f(\phi)^{-1} - V(\phi)$

- Context: Occam vs Wilson
 - Why build models only a mother could love?
- Some UV sensitive issues
 - Naturalness;
 - Large field excursions and tensor modes;
 - Robustness
 - Reheating vs insulation; mind broadening; initial conditions; ...
- A tentative scorecard

- Mechanisms
- Robustness
- Initial Conditions
- Naturalness
- Reheating & scales
- Signatures
- Mind broadening

- Mechanisms
- Robustness
- Initial Conditions
- Naturalness
- Reheating & scales
- Signatures
- Mind broadening

- Mechanisms
- Robustness
- Initial Conditions
- Naturalness
- Reheating & scales
- Signatures
- Mind broadening

- Mechanisms
- Robustness
- Initial Conditions
- Naturalness
- Reheating & scales
- Signatures
- Mind broadening

- Mechanisms
- Robustness
- Initial Conditions
- Naturalness
- Reheating & scales
- Signatures
- Mind broadening

- Mechanisms
- Robustness
- Initial Conditions
- Naturalness
- Reheating & scales
- Signatures
- Mind broadening

- Mechanisms
- Robustness
- Initial Conditions
- Naturalness
- Reheating & scales
- Signatures
- Mind broadening

- There are plausible formulations of inflation in string theory, but still at the stage of mapping out what is possible
 - Not easy to obtain and keep control over approximations

- There are plausible formulations of inflation in string theory, but still at the stage of mapping out what is possible
 - Not easy to obtain and keep control over approximations
 - Possible progress on fine-tunings, but not generically

- There are plausible formulations of inflation in string theory, but still at the stage of mapping out what is possible
 - Not easy to obtain and keep control over approximations
 - Possible progress on fine-tunings, but not generically
 - New insights on reheating (warping, cosmic strings);

- There are plausible formulations of inflation in string theory, but still at the stage of mapping out what is possible
 - Not easy to obtain and keep control over approximations
 - Possible progress on fine-tunings, but not generically
 - New insights on reheating (warping, cosmic strings);
 - Inflationary signals largely robust, except near horizon exit

- There are plausible formulations of inflation in string theory, but still at the stage of mapping out what is possible
 - Not easy to obtain and keep control over approximations
 - Possible progress on fine-tunings, but not generically
 - New insights on reheating (warping, cosmic strings);
 - Inflationary signals largely robust, except near horizon exit
 - Clear statement about tensor perturbations, nongaussianity?

- There are plausible formulations of inflation in string theory, but still at the stage of mapping out what is possible
 - Not easy to obtain and keep control over approximations
 - Possible progress on fine-tunings, but not generically
 - New insights on reheating (warping, cosmic strings);
 - Inflationary signals largely robust, except near horizon exit
 - Clear statement about tensor perturbations, nongaussianity?
- Hopefully even more novel physics will emerge...

- There are plausible formulations of inflation in string theory, but still at the stage of mapping out what is possible
 - Not easy to obtain and keep control over approximations
 - Possible progress on fine-tunings, but not generically
 - New insights on reheating (warping, cosmic strings);
 - Inflationary signals largely robust, except near horizon exit
 - Clear statement about tensor perturbations, nongaussianity?
- Hopefully even more novel physics will emerge...

The Cosmological Constant?

Paris Dec 2014

fin

Paris Dec 2014