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The curvaton scenario

An alternative model to single-field inflation for the origin of structures

The inflaton drives inflation while the curvaton generates curvature perturbations (hence
the name)

This “liberates” the inflaton, at the expense of making inflation less predictive

We now have two light degrees of freedom during inflation, sensitive to two potentials and
initial conditions.

The curvaton is a light field which
|. has a subdominant energy density during inflation
2. Islong lived (compared to the inflaton)
3. Generates the primordial curvature perturbation

* We will often drop assumption 3, and consider the mixed inflaton-curvaton scenario



Curvaton phenomenology

®  Adding one extra field allows for interesting new phenomenology which single-field inflation
cannot generate

|. Large local non-Gaussianity

2. lIsocurvature perturbations
Observations don't (currently) require a second field, but high energy theories might

A brief history: The trilogy from 2001: Enqgvist and Sloth, Lyth and Wands (who created
the name and got ~900 citations), Moroi and Takahashi.

Plus two related older papers, Linde and Mukhanov (1996), Mollerach (1990)



Curvaton (O) background evolution:
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The curvaton may decay before or after it becomes dominant

The longer the curvaton lives, the larger its relative energy density becomes, as measured by rdec



What non-Gaussianity does the (quadratic) curvaton predict?
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® The curvature perturbation is approximately ( ~ Qa(sﬁ ~{s (6_0 + (5_0> )
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® |ocal non-Gaussianity is generated: fani~1/Qg

® The Planck constraint fni <10, tells us Q5>0.1.A priori, Qo~10~ (and
fae~10°) was possible.

® |[f the curvaton dominates before decay, (26=1 and fn.=-5/4

® In terms of a linear scale on -5/4<fN.<10° - 99.99% has already been
ruled out

® |n terms of a linear scale on 10°<Qs<I| - 10% has been ruled out

® A strongly subdominant curvaton is totally ruled out, so the dominant
curvaton case becomes our “prediction”. Detecting fni=3 or 7 seems
unlikely, although it is compatible with the model



Isocurvature perturbations

Cosmological perturbations may be of two classes, adiabatic or isocurvature -
Bartjan’s talk today

Adiabatic perturbations mean that locally all parts of the universe look the
same, so e.g. the ratio of photons to baryons to CDM is the same
everywhere

The curvaton can generate isocurvature perturbations (most multi-field
models can, single-field models never can), but if the universe thermalises
after curvaton decay then none will survive.

Theorists are not really able to interpret the 1% level isocurvature
constraints in terms of early universe models, the thermal history of the
universe prior to BBN is poorly understood



The simplest curvaton scenario
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® Parameter constraints were originally made by Bartolo and Liddle
(2002), the data allowed so much freedom they restricted the
model to i) the Gaussian case ii) negligible inflaton perturbations

® (B, Cortes and Liddle (2014) revisited the model with Planck data.
Even dropping those two assumptions we find the model is close to
being ruled out. Observational data has improved a lot.

® We also allow the inflating curvaton scenario, in which the curvaton
drives a second period of inflation. Applies when sigma+>Mpg..



Curvaton post Planck]|
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The uncertainty in matching the Planck pivot scale to N is significant. We don't know the expansion history of
the universe between inflation and BBN. Smaller values of N are possible, which the data prefers.

Red lines are for a negligible curvaton mass
Blue lines have m_sigma=m_phi/2 (it is hard to make the curvaton heavier, and a bluer spectrum results)

Green lines are the inflating curvaton regime, where it drives a second period of inflation
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Post Planck?2!?
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From Finelli’s talk in Ferrara Dec |4.

Only relevant change if the E mode polarisation is included, then r=0 and ns=0.98 is more than 2 sigma ruled
out.This further rules out the two field scenario.

We need to wait for the joint BICEP/Planck analysis to see what happens to the tensor constraint. Will the

quadratic single field model survive? 5



Planck data alone may be close to ruling
out a two field model
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The simplest curvaton model, with 5 free parameters no longer provides an excellent match to the data
anywhere in its (large) parameter space.

This model has five free parameters, all of which can vary by many orders of magnitude. But there are still only
specific areas of the ns vs r plot which the model can fill. It is not the non-Gaussianity constraints which is
putting the curvaton model under pressure.

The five free parameters are:

The two mass parameters

The decay rates of each field

The initial value of the curvaton field (the initial inflaton VEV is determined by the thermal history via N)

The pure curvaton scenario makes an additional prediction that the tensors are negligible

A Bayesian model comparison is in progress, results soon after we have Planck data



Curvaton post Planck| and BICEP2
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Red lines are for negligible curvaton mass, blue lines have m_sigma=m_ phi/2. Green lines are the inflating

curvaton regime, where it drives a second period of inflation.

BICEP2 adds a lower bound on the tensor to scalar ratio, which requires that the inflaton perturbations
contribute at least 50% of the total curvature perturbation. If confirmed, this rules out the original curvaton

scenario, in which the inflaton perturbations and hence r are negligible.



A difficult time for curvaton fans?

® [f confirmed with Planck, the BICEP2 detection of large tensor modes has ruled out the original
curvaton scenario

®  Mixed scenarios in which both the inflaton and curvaton contribute to the primordial
curvature perturbation can never be ruled out by a detection of tensors

®  We can (or could) take a positive view, either a large negative running of the curvaton (Sloth
2014) or anti-correlated isocurvature modes (Kawasaki & Yokoyama 2014) as means to
suppress the large scale power and alleviate possible Planck/BICEP tension

®  Planck did significantly improve the constraints on both local non-Gaussianity and
isocurvature perturbations, but there was no detection of either. This makes the curvaton
phenomenology less interesting.

®  However, the curvaton does not in any way require the existence of isocurvature
perturbations today, and a natural limit of non-Gaussianity is local fni=-5/4. So Planck data
does not come close to ruling it out all curvaton scenarios.

®  Planck data alone puts pressure on the simplest curvaton scenario
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Model independent curvaton statements

® The pure curvaton scenario has a suppressed tensor spectrum, a
detection of r can force us into the mixed inflaton-curvaton scenario

® By tuning the inflaton potential, any value of ns and r can be achieved with
a quadratic curvaton

® A detection of (local) fnL<-5/4 would rule out all quadratic curvaton
models (but not non-qadratic curvaton potentials)

® A constraint [fnL|<| would be a very strong hint against all curvaton
scenarios, independently of the potential of either field (even
independently of the number of curvaton and inflaton fields)



Filling the ns-r plane
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The early universe is very poorly constrained

® The curvaton scenario really is different from single-field inflation
® During inflation we have a second, perturbed degree of freedom

® From the end of inflation until after the curvaton decays, the universe behaves
very differently. Both at the homogeneous and the perturbed level.

® What was the background equation of state during baryogenesis? Did
isocurvature perturbations exist! Are the perturbations on these small scales
Gaussian? We have no idea.

® Because the perturbations are so tiny, fn.=-5/4 is a small correction, except
when the amplitude of perturbations is large. For small scale perturbations
where power spectrum bounds are very weak, this value has a huge effect.
Example: Primordial black hole formation rates - S.Young & CB 2013



We Iack guidance - see Cliff’s talk

Toutes Directions

Occamopolis

Wilsonville + Bayes cité

€ LaBonne Direction

* Model building is important: for model comparison we need to know the priors (or
make an arbitrary choice)
* Models are incomplete if they do not specify reheating/thermal history, observations

are now sensitive enough to care, e.g. whether N=50 or 60 - Ringeval’'s talk
* The data is not good enough to distinguish between many classes of models, in some
cases it will never ever be (two models can predict exactly the same CMB spectrum)

* Jop down and bottom up approaches are needed

|6



Why are the curvaton and inflaton
scenarios so hard to distinguish?

The models were not made to look similar by fine tuning

A simple non-linear transformation, x -> x+x?, generates order unity non-
Gaussianity, i.e. fne~ |

This is the same level as the secondary non-Gaussianity’s present for all
models, e.g. the ISW-lensing bispectrum detected by Planck

These two types of non-Gaussianity are distinguishable

fnr=-5/4 is hard to detect only because the perturbations are tiny. It is a
0.001% effect

But this might be the only way to distinguish the two scenarios



Related models

Several other models predict essentially identical phenomenology (local non-Gaussianity,
isocurvature perturbations and suppressed tensor perturbations)

For example

|. Modulated reheating (the efficiency of reheating is a function of position)

2. Inhomogeneous end of inflation (inflation ends later in some positions)

3. Models with a subdominant field curving the trajectory during inflation
This is not a coincidence, all models are tracking the conversion of an initial isocurvature
perturbation (corresponding to a light and subdominant field) into the adiabatic perturbation
after inflation

The models are physically different, and detailed predictions for the simplest realisations do vary

For various classes of models, fni~1 is a natural target (including the curvaton with any
potential) - c.f. r~(ns-1)? - Linde’s talk

In particular, multifield models in which all fields decay independently and at the same time
“typically” predict fni~0 and are probably indistinguishable from single-field models



Conclusions

If a detection of (large) r is made, the original curvaton scenario in which the
inflaton perturbations can be neglected is ruled out

lgnoring BICEP2, Planck alone has put pressure on the simplest curvaton scenario
(quadratic inflaton and curvaton potentials), due to a combination of the spectral
index and r.

The above is true even if we allow an arbitrary proportion of the perturbations to
come from the inflaton (we also allow the curvaton to drive a second period of
inflation). The data is good enough to start ruling out two-field scenarios

Non-Gaussianity constrains the curvaton to not be too subdominant, but are a
long way from testing the fni=-5/4 limit. If non-G is detected, we could learn a lot.

Without a detection of local non-Gaussianity or isocurvature perturbations we
will never need a curvaton type mechanism, but this does not imply the curvaton
didn't exist. How should we proceed?



Curvaton evolution

1 5

V = Zmio”
2m0
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® For simplicity, we initially assume a quadratic potential for the curvaton,
most papers in the literature do so
G+3Ho+V, =0,
b0 + 3Hbo + V 5o00 = 0.
°

Just for a quadratic potential, the two evolution equations are the same.
This implies that the ratio of the two solutions is constant in time. The

second equation neglects back reaction from gravity, accurate as long as
its energy is subdominant
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Curvaton density perturbations

The curvaton density perturbation

Po V(o) o

o

ops V(o +00) V(o) _,b0 (5_0)2

The truncation at second order follows if we assume a quadratic curvaton potential,
deviations can be tested/constrained by gni

The curvaton perturbation are Gaussian, the above form of non-Gaussianity, Gaussian +
Gaussian squared is known as the local form of non-Gaussianity

The above formula matches the local model of non-Gaussianity, and if the above was the
final result for zeta we would have fn~|

Gravity is non-linear, so further non-Gaussianities will be generated in all models, this also
generates fni~ 1, but with a different shape which can be observationally distinguished

However, we should consider that the curvaton is not the only component of the universe

C = QJCJ Qa — pa/ptot

fan o< (B ¢12 o 1/Q,
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Corrections to fnL

The basic result is correct, the less efficient the transfer from the
curvaton perturbation to total curvature perturbation, the larger the
non-Gaussianity becomes. This holds quite generally

The “full” result is

- 0 . 3P0
fNL B 4rd€C g B érdec Fdee = 4,07 + 30, decay
1 1
If fai is large, NI @ 6 Q_a

The Planck constraint, fni<10, tells us rgec>0.1.A priori, rgec~ 10~ (and
fae~10°) was possible.

If the curvaton dominates before it decays fn=-5/4

22



What does the curvaton predict?

® The Planck constraint fni<10, tells us Q>0.1.A priori, Qrgec~10~ (and
fai~10°) was possible. If the curvaton dominates before decay fn=-5/4

® In terms of a linear scale on -5/4<fni<10° - 99.99% has already been
ruled out

® |n terms of a linear scale on 10°<rg..<| - 10% has been ruled out

® A priori, we could think of the two extremes as being natural

0 : .
. 22 1= rgee ~ 107°, fx1 ~ 10° coming from the COBE normalisation
o
: . 5
2. A sufficiently late decaying curvaton, such that = 7acc =1, /xp = —7

® The first case is totally ruled out, so the second case becomes our
“prediction”. Detecting fni=3 or 7 seems unlikely, although it is
compatible with the model

23



curvaton decay rate

Curvaton decay rate Vs rdec

The curve will shift for different choices of masses and initial curvaton vev. But the
shape remains the same.
For small curvaton decay rates, rgec->1

Log(I +)
=18+

Credit: Robert Hardwick 3P
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The local model of non-Gaussianity

C(x) = Cax) + 3 Ave(CE(x) — (B(x))

The local model which arises from super-horizon evolution of the curvature perturbation

Zeta is conserved in single-field models on large scales, therefore this model only arises in models
with multiple light fields present during inflation

The Planck constraint (and WMAP9 in brackets) are

fNL=2.7+58  (37.2419.9)
Using the power spectrum amplitude, we see that the CMB is at least 99.9% Gaussian for this model.
This shape has its largest signal in the squeezed limit, when one wavelength is very large

Because a detection of a squeezed limit bispectrum would rule out all single-field models, the local
model has been studied in great depth

k3

\‘kz ko <K k1 ~ k3

k1

Komatsu et al; Decadel review 2009
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Non-Gaussianity summary

All single-source models must obey a relation between one trispectrum

parameter and faL
B <6fNL) :
TNL = 5

If multiple-fields contribute to zeta (eg the curvaton and inflaton), then

2
TNL 2 (6f5NL)

A large gni would signal a non-quadratic potential for the curvaton

faL will be scale dependent unless the curvaton potential is quadratic and the
inflaton fluctuations are negligible

Previous scale dependence work with Sami Nurmi, Kari Enqvist and Tomo
Takahashi.Work in progress with Ewan Tarrant on strong scale dependence
case, where the existing formalism breaks down
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A general test of single-source models

® For all models in which only one field generates the primordial curvature
perturbation (other than the inflaton), there is a consistency relation between one
term of the trispectrum and bispectrum

. (6fNL)2
TNL = 5

® |n models where multiple fields contribute there is instead the Suyama-Yamaguchi
inequality

2 2

® From Planck, taun.<2800 (95% confidence)
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Scale-dependence of fnL

. = Y% lég L
T dlog k
® Analogously to the power spectrum, fnL is expected to have some scale
dependence. This reflects evolution during inflation, e.g. it ends

® [t can distinguish between different non-Gaussian scenarios, not just between
Gaussian and non-Gaussian models

® The amplitude of fnL can be tuned in most non-Gaussian models, so a precise
measurement of fnL wont do this

® |n contrast, the scale dependence often can not be tuned independently of:

I . fNL
2. spectral index of the power spectrum

* Scale dependence arises from either multiple fields contributing to zeta, or due to self-
interactions in the potential (leading to non-linear equations)

ST V" Py
Nfy, ~ o rp = —
fyL fnr SH?2 P

CB etal 2010
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What does the curvaton predict?

® In terms of a linear scale on -5/4<fy.<10° - 99.99% has already been
ruled out

® |n terms of a linear scale on 10°<rg..<| - 10% has been ruled out

® These results change a lot if taking a log scale instead of linear

® A priori, we could think of the two extremes as being natural

) . ..
. 27 1= rgee ~ 1075, fap, ~ 10° coming from the COBE normalisation

o
: : 5!
2. A sufficiently late decaying curvaton, such that  7aec =1, fxo =—7

® The first case is totally ruled out, so the second case becomes our
“prediction”. Detecting fni=3 or 7 seems unlikely, although it is
compatible with the model
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Mixed inflaton-curvaton scenario

All light fields are perturbed during inflation, we will now include the inflaton
field perturbations

The power spectra due to the two fields is

P Yy — PO'NQO- ’
? e (27T> ’ g (277)

and the total power spectrum is

PC — P¢ + P,.
The bispectrum is unchanged from the pure curvaton limit

1

a:—PUQ
Qs

B: =B

but fnr is reduced because the power spectrum is enhanced by the Gaus-
sian inflaton field perturbations

B B, 1 P;
~— P2 0O p2
P? Q. P;

The tensor-to-scalar ratio is also reduced



Higher-order non-Gaussianity

P
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d ¥

a =2—
Po V(o) o *

8p, _V(oc+60)—V(o) _ bo (50)2

o

® For a quadratic potential, we may truncate at second order,
which implies gni=0. Quadratic potentials are simple to
calculate with, so gni has been unfairly neglected.

® |gnL|>>fnL? is possible with non-quadratic potentials

® g\ is hard to constrain. The current bound is |gni|< 108,
Planck has not yet produced a constraint
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When fnL=-5/4 makes a big difference

® |n order for primordial black holes to form in the very early universe, the
amplitude of perturbations needs to be much larger (otherwise the
required order unity perturbations will never occur)

® For Gaussian perturbations, one needs zeta~0.| on the relevant (small)
scales in order to form an observable number of primordial black holes

® The curvaton prediction for fnL does not depend on the amplitude of
perturbations

® With zeta~0.1, even fnL=-5/4 has a big effect, especially on the tail of the
pdf

® This leads to (at least) an order unity change on the allowed amplitude of
the power spectrum on small scales

Sam Young & CB 2013
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Power spectrum bounds
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The dashed top black line gives the upper bound on the allowed power spectra amplitude from
primordial black hole constraints. It is a weak constraint, but the best we have over a large
range of scales.

It was calculated assuming exactly Gaussian perturbations, the dashed black line can shift by an

order of magnitude for non-Gaussian scenarios
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