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Initial Conditions 
¡ Asking what came before? inevitably leads to the question of 

how the universe “started”  

¡  Singularity theorems of Hawking & Penrose 

¡  Inflation (& eternal inflation): theorem of Borde, Guth & Vilenkin 
shows again that classically a               
singularity is unavoidable  

¡ Cyclic universe: grows from cycle               
to cycle, hence, if finite, will have                                               
been in quantum regime at a finite                                               
time in the past 

¡  Perhaps there are cyclic universes that                                          
do not need a beginning, although in                                           
that case one may still need a boundary                            
condition at minus infinity 
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¡  Even though inflation & ekpyrosis are dynamical 
attractors, we know that many features/
predictions depend on initial conditions 

¡  If several alternative cosmological histories are 
allowed by a theory, initial conditions will 
determine which is the relevant one 

¡ More generally, for any early universe model, a 
big question remains unanswered: given 
quantum theoretical laws, how did a classical 
universe emerge? 



This talk: 

¡ Can Semi-Classical Quantum Gravity, together with the 
No-Boundary Proposal, address these open issues?  

 

Note: 

¡ Many mathematical footnotes are attached to the no-
boundary proposal: definition of path integral, Wick 
rotation, non-renormalizability of ordinary gravity, 
difficulties of going beyond the mini-superspace 
simplification,... 

¡  Here we will find that the configurations of greatest 
interest involve small curvatures -> this suggests that we 
may nevertheless be able to trust the semi-classical 
approximation that is used throughout 



Review of the No-Boundary 
Proposal 

¡  The wavefunction is given by a path integral over all possible 
four-geometries that are regular in the past (i.e. the possible 
paths are restricted) 

¡  Hartle-Hawking b.c.: the universe is finite and self-contained 

¡ No-Boundary Proposal is supported by AdS/CFT 

¡  Saddle point approximation: the geometries that are an 
extremum of the action with the required boundary conditions 
are typically complex – “fuzzy” instantons 

(b,�)

regular 

[Hartle, Hawking & Hertog] 

 (b,�) =

Z

C
DaD�e�S

E

(a,�)

⇡ e�S
E,ext

(b,�)



¡  The metric is taken to be of (complexified) FLRW type with a fixed 
3-sphere spatial geometry 

¡  In this minisuperspace approximation, the action then becomes 
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Complex geometries -> the above 
integral is a contour integral in the 
complex τ plane 
At τ=0, no-boundary conditions are 
imposed:  
 

⌧ = 0

a(⌧f ) = b

�(⌧f ) = �

[Hartle & Hawking] 

a = 0, a0 = 1

� = �R
SP + i�I

SP , �0 = 0



Probabilities 

¡ A standard Lorentzian history corresponds to evolving in the 
imaginary τ direction (                 ), with a and φ being 
(approximately) real  

¡ When (and only when) the universe becomes classical, the 
real part of S_E stops evolving and we get a meaningful 
notion of (relative) probability 
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Hawking’s Prototype Instanton: 
Pure de Sitter 

¡  Here there is no scalar field, only a cosmological 
constant Λ = 3 H2 

¡  Probability 
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Alternative Representation:      
AdS Contour 

¡  By running the contour up the y-axis first, we obtain a (wrong-
signature) Euclidean AdS representation (and a possible 
connection with AdS/CFT) 
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No-Boundary “Fuzzy” Instantons – 
including the scalar  
¡  For an arbitrary value of φ at τ=0, the lines where a is real do not 

match up with those where φ is real, i.e. we do not get a 
classical universe 
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[Battarra & JLL] 



No-Boundary “Fuzzy” Instantons – 
including the scalar 
¡ We must tune the imaginary part of φ at the origin τ=0 in order 

for the lines of real a and real φ to match up at late times 

 
¡  The inflationary attractor makes this possible 
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WKB Classicality – Inflation (ε constant) 
¡ As the inflationary phase proceeds, the wavefunction of the 

universe                      becomes increasingly classical, in the 
sense that its phase varies rapidly compared to the amplitude  
– WKB conditions: 
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¡ As the inflationary phase proceeds, the wavefunction of the 
universe                      becomes increasingly classical, in the 
sense that its phase varies rapidly compared to the amplitude  
– WKB conditions: 
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Inflationary instantons - Comments 
 

¡  It has been claimed that inflation is necessary in 
order to explain the classicality of the universe 

¡  Relative probabilities: 

Low values of the potential are preferred 

[Hartle, Hawking & Hertog] 
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Ekpyrotic Instantons 

[Battarra & JLL] 
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¡ Can one make sense of the no-boundary proposal when 
the potential is negative? 

¡  How can a contracting universe emerge from nothing? 
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Ekpyrotic Instantons 

[Battarra & JLL] 

¡  Require a  
different contour 

¡ No bounce 
dynamics 
included (yet), 
hence these 
instantons end in 
a crunch 

¡ Classicality is 
reached during 
the ekpyrotic fast-
roll 
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Ekpyrotic Instantons - Shape 

¡ Along this contour, the 
shape is as follows: 

Bottom: portion of Euclidean 
space 

Middle: fully complex 

Top: increasingly classical 
contracting universe 

¡  Thus a contracting 
Lorentzian universe can 
emerge from nothing as a 
region of Euclidean space 
gets created first 

[Battarra & JLL] 

We have 
imagined  
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a bounce 



WKB Classicality - Ekpyrosis 
¡  In this case also, the wavefunction becomes increasingly 

classical in a WKB sense 

[Battarra & JLL] 

|@bSR
E / @bS

I
E | ⌧ 1, |@�SR

E / @�S
I
E | ⌧ 1

N

|��SE
R/��SE

I |

�e-(�-3)N/(�-1)

0 2 4 6 8 10
0.001

0.005

0.010

0.050

0.100

N

|�bSE
R/�bSE

I |

�e-(�-3)N/(�-1)

0 2 4 6 8 10

0.005

0.010

0.050

0.100

e-(ε-3)N/(ε-1)  

~ e-N 



WKB Classicality - Ekpyrosis 
¡  In this case also, the wavefunction becomes increasingly 

classical in a WKB sense 

[JLL] 
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Cyclic Potential 
¡ On dark energy plateau, inflationary and ekpyrotic instantons 

coexist 
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Cyclic Potential - Probabilities 
¡  Relative probability of inflationary vs. cyclic instantons on dark 

energy plateau 
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Conclusions 
¡  Inflation and ekpyrosis are the only two theories known that can 

render the universe classical, starting from a quantum state 

¡  In both cases classicality is reached as a power-law in the scale 
factor of the universe 

¡  In a potential energy landscape the relative probability of the 
various classical histories is approx. given by a simple formula 

 

¡  This implies that ekpyrotic histories are vastly preferred  

¡ Open questions:  
¡  Can one can add a bounce? Is classicality preserved across the 

bounce? 

¡  How can one incorporate tunneling events? 
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Volume Weighting and 
Eternal Inflation 
¡  It has been argued that one should weight by physical 

volume in order to obtain the relevant probabilities: 

 

¡  It is then easy to determine the minimum of the probability 
distribution: 

¡  Thus we have the lowest probability at the onset of eternal 
inflation! 
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