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(cf. WKB, but for any wave function)

(Generalise: configuration g(t))

Get QM if assume initial Born-rule
distribution, P = |[¥|* (preserved
in time by the dynamics)

(shown fully by Bohm in 1952)




Example of one particle
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In agreement with experiment
if assume initial P = |¥|°

Disagrees with experiment for initial P # |¥|

Quantum theory = special case of a wider physics



BUT: experimentally quantum dof’s are always found
to have the “guantum equilibrium” distribution:

1 P= \\11\2 (Born rule)

(2D box, 16 modes)




Relaxation to quantum equilibrium

Equilibrium ( P = |w|* ) changes with time
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(Valentini and Westman, Proc. Roy. Soc. A 2005)



Superposed energies give rapidly-varying velocity fields
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Relaxation to quantum equilibrium

Equilibrium ( P = |w|* ) changes with time
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Quantify relaxation with a coarse-grained H-function

H = /dqﬁln{ﬁ/|-g‘j|9}= (minus the relative entropy)

Obeys the H-theorem (Valentini 1991, 1992)

H(t) < H(0) (cf. classical analogue)
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assuming no initial fine-grained structure in p and
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ations show exponential decay of H-function

(Valentini and Westman, Proc. Roy. Soc. A 2005)




Confirmed and extended by many independent simulations

At =0) par(t = 0)

2D oscillator, 25 modes in
superposition

(Abraham, Colin and
Valentini, J. Phys. A 2014)

14
121\
N . . 1 .
S N U0 I R Y s o A O 0 R - A | SN aexp[-b(t/2m)} e
: : TRt § S S S Frd | best fit:
0.1 - 0.1 G 0.6 : ae: 1.24
L PR 04 BN b=1.04
0.05 . , 0054 . S =002
0. 0. 0.2 i
0 - ——
0 0.5 1 5 2 25 3 35 4

5=
Relaxation is faster for
larger numbers of modes.

0.45 4.2 0.45 .-

0.4 {40! 0.1

| 008 | et Very crudely: timescale is
0! 3 of order the timescale for

wave function evolution.



The Born probability rule P = |¥|* is not a law of nature;
it holds only because we are stuck in “equilibrium”.
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And we are stuck in “equilibrium” because everything we
can see has a long and violent astrophysical history.

Equilibrium ( P = |¥|* ) changes with time
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When did relaxation to equilibrium happen?

Presumably, a long time ago, in the very early
universe, soon dfter the big bang.



Quantum noise is a relic of the big bang
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Quantum noise is a relic of the big bang

CMB anisotropies are ultimately generated by
early guantum noise (inflationary vacuum)

an test early Born rule by measuring the CMB



System with configuration ¢(¢) and wave function(al) (g, t)

. oY A These equations define a pilot-wave
¢ Ot = Hy dynamics for any system whose
. Hamiltonian H is given by a
d_q — ) differential operator
dt W"Q (Struyve and Valentini 2009)

where j = j [¢] = j(q,t) is the Schrodinger current

[Requires an underlying preferred foliation with time function t.
Valid in any globally-hyperbolic spacetime (Valentini 2004)]

By construction p(q, 1) will obey

ap dq
— 4+ d, - (pv) =0 R
at q (pl) dt L

2
and 2(q,t) = [V(q,1)|" is preserved in time (Born rule).



Pilot-wave field theory on expanding space

Flat metric  dr? = dt® — a®dx® (scale factor a = a(t) )
free (minimally-coupled) massless scalar field ¢
2 9
Hamiltonian density H = %—3 + %a(VG})

I

Fourier components ok =

Hamiltonian H = f d*x H becomes H = Z Hy.,
kr
| 1

7 — =122
with  Hy, = 5.3 T + 2{1h Gicr



Schrodinger equation for ¥ = W|gy,., t] is

0T 102 1
i =5 (- Zak?@2, ) O
or = 2 ( 23 oz, 2" Qk?“)

kr

and the de Broglie velocities

dger 1 OS

dt a3 AGxr

initial distribution P|qx,, %],

time evolution P|qy,,t| will be determined by

OP 9, 1 0S
ot B ; a@kfr ( a’ agkr)




Schrodinger equation for ¥ = W|gy,., t] is
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and the de Broglie velocities

dqyr 1 08

dt a3 AGxr

initial distribution P|qkr,ti].

time evolution P|qy,,t] will be determined by

0P 0 1 oS
ot " Z Gy ( a3 *{')ri)

kr

decoupled mode k U = Ur(qr1.qro. 1)
drop index k, wave function ¢ = (¢, go, 1)

initial distribution p(q1, g2, t;)



THE MODEL (one mode)
81/) . 1 2 1 2 2
G = ¥ (gt gt

L &Y = (/m)grad s




STRATEGY

Apply to a pre-inflationary era (rad.-dom. a « t1/2),

Derive large-scale “squeezing” of the Born rule for a

spectator scalar field (suppression of relaxation at
long wavelengths).

Assume that similar “squeezing” of the Born rule is
imprinted on the inflationary spectrum (pending a
model of the transition, future work).

NB: no relaxation during inflation itself, the Bunch-Davies
dynamics is too simple (Valentini, Phys. Rev. D 2010)



Suppression of quantum noise at super-Hubble

wavelengths
(Colin and Valentini, Phys. Rev. D 2013)

Superposition of M=25 energy states, random initial phases

VM—1+vM-1
la1. g2, 1) = \/7\— D D, 'mmd, (q1),(0)

n1=0 no=0

Initial non-equilibrium = a ‘ground-state’ Gaussian

Mode begins outside Hubble radius, evolve until time Tenter



p'(t:) Por(ti)

We are simply evolving this

equation

op 1 Or1)
— o[ p—1 — | =
ot T r‘—il:Q (p mo Y )

p(tret(0.5tencer))  Porltiee(0-5teneer))  forwards in time.

Right column: equilibrium
initial conditions

pla1.q2.ti) = |¢(q1, g2, ti)|?
ﬁl(trct(tcntcr)) ﬁQT(trct(tcntcr)) : ‘ “jl ‘!2 I)l

Left column: nonequilibrium
initial conditions

p(q1,q2.t) # (g1, g2, t:)|?
expanding-sp-ace (assume subquantum width)




We are simply evolving this
equation

op 1 Or)
— . | p— 1 — | =
ot T Z (p mo U )

forwards in time.

Right column: equilibrium
initial conditions

pq1: g2, 1) = [¢(qr. g2.ts)|?

Left column: nonequilibrium
initial conditions

p(q1.q2.1;) # \’Ci’(G’l:qQ:té)\g
(assume subquantum width)

no expanding space



7(t:) Pl (t:)
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ﬁ/(trct(o i 5tcntcr) ) ﬁ/QT(trOt(O . 5t0nt0r) )

-4 -2 0 2 4

ﬁl(trct(tcntcr)) ﬁQT(trOt(tcntcr))

expanding space

p'(t:)

no expanding space
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Write |
<|ﬁ-*'>k|2> = <|ﬁ-‘5k|z>QT §(k)

The function ¢(k) measures the power deficit at
the end of pre-inflation (“squeezed” Born rule)

Expect <(k) to be smaller (< 1) for smaller k
(i.e. for longer wavelengths, less relaxation).

Expect &(k) to approach 1 for large k
(i.e. for shorter wavelengths, more relaxation)

Repeat the above simulation for varying k,

plot the results as a function of k
(S. Colin and A. Valentini, arXiv:1407.8262)



Results for M =4,6,9, 12, 16, 25 modes (fixed time interval)
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We have derived a “squeezed Born rule” for a spectator
scalar field at the end of a pre-inflationary era.

Assume a similar correction to the Born rule in the Bunch-
Davies vacuum (pending model of transition), with the Born
rule “squeezed” by the same factor é(k).
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Predicted shape for the CMB power deficit

Rk = — [-@'k] (¢ is now the inflaton perturbation)
t=t. (k)

(|ox|?) = <|ﬁ-’5k|2>QT §(k)
Pr(k) = Pg" (k)&(k)

E(k) = tan™Y(ci(k/mt) + ¢2) - (11/2) + c3

(S. Colin and A. Valentini, arXiv:1407.8262)



In effect we have a two-parameter model

Pr(k) = Pr" (k)é(k)

§(k) = tan™(ci(k/mt) + c2) - (11/2) + c3

where ¢;,c3,c3 depend on the number of modes and
the time interval (in the pre-inflationary phase).

Current work (with P. Peter and S. Vitenti):

-- using COSMOMC to explore the parameter space

-- preliminary fair fit but no conclusions yet about
likelihood or significance



STATISTICAL ANISOTROPY

Breaking the Born rule in the Bunch-Davies vacuum will
generically break statistical isotropy:

-- “squeezing” factor £ can depend on the direction
of the wave vector k
(Colin and Valentini 2013)

VvV
(277)3/2
(Valentini 2010, Colin and Valentini 2014)

-- anomalous phases of ok = (qx1 + 1qK2)



STATISTICAL ANISOTROPY

Breaking the Born rule in the Bunch-Davies vacuum will
generically break statistical isotropy:

-- “squeezing” factor £ can depend on the direction
of the wave vector k
(Colin and Valentini 2013)

Vi

(Valentini 2010, Colin and Valentini 2014)

-- anomalous phases of ¢x =

Therefore we expect:
-- isotropy at short wavelengths (equilibrium)

-- anisotropy at long wavelengths (nonequilibrium)



NOTES ON OUR PREDICTIONS

-- Cannot predict lengthscale at which power deficit
E(k) = tan(ci(k/mt) + ¢2) - (11/2) + c3

will set in, since measured c¢; will be rescaled by inflationary
expansion (depends on unknown number of e-folds)

-- But: we can predict that anomalous phases/anisotropies
are expected at comparable (slightly larger) lengthscales
(S. Colin and A. Valentini, arXiv:1407.8262)

-- Superficial resemblance to data:
power deficit for | < 40,
anisotropy for / < 10



Planck 2013 results. XXIIl. Isotropy and statistics of the CMB

pected. However, it should be clear that the evidence for some of
the large-angular scale anomalies 1s significant indeed, yet few
physically compelling models have been proposed to account for
them, and none so far that provide a common origin. The dipole

We have proposed a mechanism for a common origin



All of our results come simply from the standard
guantum-mechanical equation

The only change is in the initial conditions.

We assume that at the initial time the width of
p(q1.q2.t:) is smaller than the width of |¢(q1.qa.t:)|?

This (mathematically) tiny change might provide a common
origin for the observed large-scale CMB anomalies.



SUMMARY

1. De Broglie-Bohm formulation of quantum theory:
allows non-Born rule probabilities (P # || )

2. Relaxation to “equilibrium”, P — |W¥|? (cf. thermal)

3. Expanding space, relaxation is suppressed at long
wavelengths; expect P + |'LIJ\2 on large scales

4. Single mechanism for both power deficit and statistical
anisotropy in low-/ region (CMB)

5. Inverse-tangent prediction for Pr (k) = P3* (k)&(k);
comparison with data (in progress)



