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De Broglie’s Pilot-Wave Dynamics (1927) 

Get QM if assume initial Born-rule 
distribution,                  (preserved 
in time by the dynamics) 

(shown fully by Bohm in 1952) 

(                                 ) 

(cf. WKB, but for any wave function) 

(Generalise: configuration          ) 



In agreement with experiment 
    if assume initial  

Disagrees with experiment for initial  

Quantum theory = special case of a wider physics 

           Example of one particle 



BUT: experimentally quantum dof’s are always found  
to have the “quantum equilibrium” distribution: 

Why? (2D box, 16 modes) 

x 
y 

(Born rule) 



Equilibrium (                 ) changes with time 

  Non-equilibrium (                ) relaxes to equilibrium 

(Valentini and Westman, Proc. Roy. Soc. A 2005) 

Relaxation to quantum equilibrium 



      Superposed energies give rapidly-varying velocity fields  

    Trajectories are erratic and tend to explore the region 



Equilibrium (                 ) changes with time 

  Non-equilibrium (                ) relaxes to equilibrium 

(Valentini and Westman, Proc. Roy. Soc. A 2005) 

Relaxation to quantum equilibrium 



Quantify relaxation with a coarse-grained H-function 

Obeys the H-theorem (Valentini 1991, 1992) 

(cf. classical analogue) 

assuming no initial fine-grained structure in       and          

(minus the relative entropy) 



        Simulations show exponential decay of H-function 

(Valentini and Westman, Proc. Roy. Soc. A 2005) 



Confirmed and extended by many independent simulations 

2D oscillator, 25 modes in 
superposition 
(Abraham, Colin and 
Valentini, J. Phys. A 2014) 

Relaxation is faster for 
larger numbers of modes. 
  

Very crudely: timescale is 
of order the timescale for 
wave function evolution. 



The Born probability rule                 is not a law of nature; 
it holds only because we are stuck in “equilibrium”. 
  



The Born probability rule                 is not a law of nature; 
it holds only because we are stuck in “equilibrium”. 
  

And we are stuck in “equilibrium” because everything we 

can see has a long and violent astrophysical history. 



Equilibrium (                 ) changes with time 

  Non-equilibrium (                ) relaxes to equilibrium 

The Born probability rule                 is not a law of nature; 
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And we are stuck in “equilibrium” because everything we 

can see has a long and violent astrophysical history. 



When did relaxation to equilibrium happen? 

Presumably, a long time ago, in the very early 
        universe, soon after the big bang. 
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CMB anisotropies are ultimately generated by 
early quantum noise (inflationary vacuum) 

Can test early Born rule by measuring the CMB 

Quantum noise is a relic of the big bang 



System with configuration          and wave function(al)  

These equations define a pilot-wave 
dynamics for any system whose 
Hamiltonian       is given by a 
differential operator  
(Struyve and Valentini 2009) 

By construction              will obey 
 
 
 
and                                      is preserved in time (Born rule). 

[Requires an underlying preferred foliation with time function t. 
  Valid in any globally-hyperbolic spacetime (Valentini 2004)] 



Pilot-wave field theory on expanding space 

Flat metric 

Hamiltonian density 

(scale factor a = a(t) ) 





drop index k, wave function 

initial distribution 



THE MODEL (one mode) 

[ = (1/m)grad S ] 



                                   STRATEGY 
  
 
 

Apply to a pre-inflationary era  (rad.-dom.               ). 
  

Derive large-scale “squeezing” of the Born rule for a 
spectator scalar field (suppression of relaxation at 
long wavelengths). 
  

Assume that similar “squeezing” of the Born rule is 
imprinted on the inflationary spectrum (pending a 
model of the transition, future work). 
  
 
 

NB: no relaxation during inflation itself, the Bunch-Davies  
 dynamics is too simple (Valentini, Phys. Rev. D 2010) 



 Suppression of quantum noise at super-Hubble 
                              wavelengths 
            (Colin and Valentini, Phys. Rev. D 2013) 

Superposition of M=25 energy states, random initial phases 
 
 
 
 
 
Initial non-equilibrium  =  a ‘ground-state’ Gaussian 
 
Mode begins outside Hubble radius, evolve until time       



expanding space 

We are simply evolving this 
equation 

forwards in time. 

Right column: equilibrium 
initial conditions 
 
 
 
  

Left column: nonequilibrium 
initial conditions 
 
  

(assume subquantum width) 
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expanding space   no expanding space 



Write 

The function          measures the power deficit at 
the end of pre-inflation (“squeezed” Born rule) 



Write 

The function          measures the power deficit at 
the end of pre-inflation (“squeezed” Born rule) 

Expect          to be smaller (< 1)  for smaller k 
(i.e. for longer wavelengths, less relaxation). 
  

Expect           to approach 1 for large k 
(i.e. for shorter wavelengths, more relaxation) 

Repeat the above simulation for varying k , 
plot the results as a function of k 
(S. Colin and A. Valentini, arXiv:1407.8262) 



First approximation: ignore oscillations in ξ(k)  

ξ(k) = tan⁻¹(c₁(k/π) + c₂) - (π/2) + c₃ 

Results for M = 4, 6, 9, 12, 16, 25 modes (fixed time interval) 

                  c₁, c₂ and c₃ are free parameters 



We have derived a “squeezed Born rule” for a spectator 
scalar field at the end of a pre-inflationary era. 
   

Assume a similar correction to the Born rule in the Bunch-
Davies vacuum (pending model of transition), with the Born 
rule “squeezed” by the same factor ξ(k). 



ξ(k) = tan⁻¹(c₁(k/π) + c₂) - (π/2) + c₃ 

Predicted shape for the CMB power deficit 

(  is now the inflaton perturbation) 

(S. Colin and A. Valentini, arXiv:1407.8262) 



In effect we have a two-parameter model 

ξ(k) = tan⁻¹(c₁(k/π) + c₂) - (π/2) + c₃ 

where c₁,c₂,c₃  depend on the number of modes and 
the time interval (in the pre-inflationary phase). 
 
Current work (with P. Peter and S. Vitenti): 
-- using COSMOMC to explore the parameter space 
-- preliminary fair fit but no conclusions yet about   
    likelihood or significance 



STATISTICAL ANISOTROPY 

Breaking the Born rule in the Bunch-Davies vacuum will 
generically break statistical isotropy: 
   

   -- “squeezing” factor ξ can depend on the direction  
       of the wave vector k 
       (Colin and Valentini 2013) 
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STATISTICAL ANISOTROPY 

Breaking the Born rule in the Bunch-Davies vacuum will 
generically break statistical isotropy: 
   

   -- “squeezing” factor ξ can depend on the direction  
       of the wave vector k 
       (Colin and Valentini 2013) 
   
 

   -- anomalous phases of 
   

       (Valentini 2010, Colin and Valentini 2014) 

Therefore we expect: 
  

  -- isotropy at short wavelengths (equilibrium) 
  

  -- anisotropy at long wavelengths (nonequilibrium) 
 
 
 



                      NOTES ON OUR PREDICTIONS 
 
-- Cannot predict lengthscale at which power deficit  
 
 
will set in, since measured c₁ will be rescaled by inflationary 
expansion (depends on unknown number of e-folds) 
 
-- But: we can predict that anomalous phases/anisotropies  
    are expected at comparable (slightly larger) lengthscales 
    (S. Colin and A. Valentini, arXiv:1407.8262) 
 
-- Superficial resemblance to data: 
         power deficit for l ≲ 40,    
         anisotropy for l ≲ 10 
 
 
 
 
 
 
 
 
 
 

ξ(k) = tan⁻¹(c₁(k/π) + c₂) - (π/2) + c₃ 



Planck 2013 results. XXIII. Isotropy and statistics of the CMB 

We have proposed a mechanism for a common origin 



All of our results come simply from the standard 
quantum-mechanical equation 

The only change is in the initial conditions. 
  

We assume that at the initial time the width of 
                    is smaller than the width of             

This (mathematically) tiny change might provide a common 
origin for the observed large-scale CMB anomalies. 



SUMMARY 
  
 

1. De Broglie-Bohm formulation of quantum theory: 
     allows non-Born rule probabilities (                ) 
  
 

2. Relaxation to “equilibrium”,                      (cf. thermal) 
 
  

3. Expanding space, relaxation is suppressed at long  
    wavelengths; expect                   on large scales 
 
  

4. Single mechanism for both power deficit and statistical 
     anisotropy in low-l region (CMB) 
 
  

5. Inverse-tangent prediction for                                       ; 
    comparison with data (in progress) 


