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Principled approach to tensor detection

We advocate that analyses seeking to detect tensors from 
data should adopt the following principles:

Constraints should be imposed directly on the tensor 
amplitude AT, rather than on the tensor-to-scalar ratio r.

The prior distribution for the amplitude AT must be chosen 
with care, and should not select out a preferred observed 
scale.

The amplitude should be constrained at an optimized `pivot’ 
scale for the chosen dataset combination.
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2. As the order of magnitude of the tensor amplitude
is a priori unknown, the prior distribution of tensor
amplitudes must be chosen with care.

3. The tensor spectrum should be constrained at a
‘pivot’ scale optimized for the set of data and model
priors being considered.

The BICEP2 detection prompted a number of analyses
under di↵erent model assumptions. Typically the tensor-
to-scalar ratio r has been constrained, though Ref. [17]
considered the tensor amplitude directly. The pivot scale
has normally been taken at a default value, such as the
CosmoMC default of 0.05Mpc�1, or a di↵erent scale cho-
sen but not optimized.

Concerning the prior distribution of tensor amplitudes,
all articles to date have assumed a uniform prior on r or
on the tensor amplitude, even in cases where strongly
blue-tilted spectra are considered [21, 22]. This is ex-
tremely hard to justify, as such a prior is uniform only at
the chosen pivot scale and will be highly non-uniform at
any other scale, as shown in Ref. [20]. Obviously there is
no reason why the mechanism producing the perturba-
tions should be aware of the scale at which we are able
to constrain them, and have the special property of uni-
formity there. Hence it is crucial at least to test possible
prior dependence of any conclusions being derived, and
ideally to impose a more physically-motivated prior in
the first place.

We now discuss these points in detail.

A. The case for separate scalars and tensors

We parameterize our set of primordial spectra as sim-
ple power laws,

AS(k) = AS(k0)k
nS�1 , (1)

AT(k) = AT(k0)k
nT , (2)

where k0 is the pivot scale where observables are specified
at, and the spectral indices defined by

nS � 1 ⌘ d lnAS(k)

d ln k
, nT ⌘ d lnAT(k)

d ln k
, (3)

are taken to be constants throughout. The ratio of
tensor-to-scalar amplitude of perturbations is defined as

r(k) ⌘ AT(k)

AS(k)
. (4)

Commonly the amplitude of B-modes is quantified by
the fraction of tensor-to-scalar signal, r(k), that could be
constrained. This combination is well justified as long as
we don’t have a tensor amplitude detection, i.e. while the
scalar perturbation is the only sector observed. If there
is a tension between di↵erent limits on r coming from
di↵erent scales we can alleviate it by changing the shape
of the scalar spectrum or by considering modifications to

parameters that are degenerate with the scalar spectrum.
However none of these modifications to AS(k) help us to
learn directly about the tensor sector, which is the main
aim when we consider constraints on r.
For the case of BICEP2, proposals for reducing the

tension with the bounds imposed by Planck include mod-
ifications to the running of the spectral index, spatial
curvature, optical depth, e↵ective number of neutrino
species, etc. [11]. Alleviating this tension with other data
in this fashion is more a reflection of the way the scalar
and tensor spectra are tied together and less of increased
insight into the model behind the origin of fluctuations.
We argue that r(k) is obsolete once there is a detection
of primordial modes, which we want to characterize inde-
pendently of the other parameters of the theory. Tensions
between datasets should be identified and accounted for
on the basis of the parameters appearing naturally in the
underlying model.

B. Linear versus logarithmic prior on the tensor
amplitude

All analyses to date that combine BICEP2 with other
CMB data used a uniform prior on AT or r [11, 12, 15,
16], with the exception of Ref. [17]. There is no reason
to apply a uniform prior on the scale at which an ex-
periment measures AT, because no physical model will
single out that one scale as the one to consider a prior
to be uniform at, as opposed to any other scale. A safer
prior is the Je↵reys’ prior [23], which is typically applied
when a positive-definite continuous quantity is analysed
and whose order-of-magnitude is unknown, as is the case
with AT.1 This prior takes a logarithmic form which is
justified by invariance under change of parameterization.
Importantly, we will see in the next subsection that

the logarithmic prior has well-behaved properties under
change in pivot scale, as compared to the linear prior.
As we showed in Ref. [20], a prior uniform on either AT

or r doesn’t correspond to a uniform prior at any other
scale, because AT doesn’t transform linearly with scale
k. Its k-dependence, given by Eq. (2), is exponential
in nT. In Fig. 1 (left panel) we show an example of the
transformation of the prior on AT taken to be uniform at
k = 0.002Mpc�1 and transported to k = 0.01Mpc�1. At
the new scale the prior distribution is clearly not uniform.
This means that in choosing to sample AT uniformly at
a given scale, we are singling out that scale as the only
one where the prior is uniform, and all other scales are
sampled non-uniformly. Priors uniform in AT are not
preserved under scale transformations.

1
We don’t have complete uncertainty about the tensor spectrum.

We know it is positive definite, and though we don’t know the

order of magnitude, we know it is driven by new physics some-

where between the electroweak scale and the GUT scale. Thus

the “order-of-order of magnitude” is known.



What should the prior on AT be?
Analyses to date have typically imposed a uniform prior on the tensor-to-
scalar ratio r, most commonly at the CosmoMC pivot scale 0.05 Mpc-1.

As the BICEP2 signal is much stronger than expected, the tensor spectral 
index nT is found to be strongly positive.

Priors are for you to choose, but need to be chosen carefully.              
Some options:

Linear on AT (or r): But this selects a special scale; a prior linear 
at one scale becomes strongly non-linear on another.

Logarithmic on AT (or r): Expresses ignorance of the order-of-
magnitude of the amplitude. Pivot-scale-independent for 
power-law spectra (apart from boundary effects).

Superposition of the above: A plausible way of including 
knowledge that ns -1 = - 6ε + 2η is non-zero.



3

FIG. 1: Transformation of prior density with cosmological scale, from k = 0.001Mpc�1 to k = 0.015Mpc�1. Left panel:
Linear prior in AT, uniform density at the original scale does not correspond to uniform density at the transported scale, and
we obtain distorted density contours at the new scale. Right panel: Logarithmic prior on AT preserves the density of the
contours between scales and hence ensures for safe transformation of the posterior between di↵erent k.

Instead, if we sample uniformly in lnAT the transfor-
mation law is now linear in lnAT and ensures preser-
vation of the prior when transported across pivot scales.
The same is valid for r, with the added mixing of the joint
transportation of the prior on both AT and AS (though
for the latter the posterior is very well constrained within
the prior so the same issues don’t arise). In the right-
hand panel of Fig. 1 we show the transformation of a
prior uniform in lnAT, which apart from boundary ef-
fects remains uniform at the transformed scale.

C. The choice of pivot scale

An advantage of separating the scalars from the tensors
is the ready identification of a pivot scale for each cor-
responding to the experiment and observable we’re con-
straining. In Refs. [20, 24] we stressed the importance of
choosing an optimized pivot scale for a parameter when
quoting constraints on that parameter. We also noted
the possibility of choosing separate pivot scales for the
scalars and tensors, since even a given single experiment
probes those most sensitively on di↵erent length scales.

The pivot scale of an observational dataset that mea-
sures tensor modes is the scale that decorrelates the un-
certainties on AT and its derivative nT. This is di↵er-
ent from the scale that decorrelates uncertainties on r
and its derivative, as this scale is also sensitive to the
pivot scale for the scalar spectrum which is typically on
shorter scales due to the di↵erent shape of the induced
CMB power spectrum.

Since the BICEP2 release, there has been confusion
in the literature as to what scale to choose for di↵erent

datasets [11, 15–17]. Some of this confusion was cleared
up in Ref. [7], though again we point out that once the
tensor contribution has been clearly detected, parame-
terization in terms of r(k) is no longer necessary.
In the following section we extract the pivot scales for

the dataset combinations of interest.

III. BICEP2 AS A PRIMORDIAL SIGNAL

We now derive constraints on the tensor spectrum us-
ing the optimal prior for each data combination. In this
section we will assume that the BICEP2 signal is entirely
primordial, so as to enable comparison with various pre-
vious works that have made di↵erent prior assumptions.
The following section will incorporate models of polarized
dust foregrounds.
First we identify appropriate scales for the com-

bination of Planck temperature and WMAP polar-
ization data, referred to as Planck+WP, and for
the Planck+WP+BICEP2 combination. Starting with
Planck+WP, we take the priors on the tensor parame-
ters to be uniform in the ranges �6 < ln(1010AT) < 3
and �3 < nT < 1. The other cosmological parameters
have the default priors set in the April 2014 CosmoMC
release [25], with foreground parameters handled as in
the Planck collaboration analyses [6].
On its own Planck+WP does not detect any tensor

signal, but nevertheless the decorrelation technique of
Ref. [24] can be used to estimate the pivot and its un-
certainty. We perform runs at di↵erent scales, shown in
Fig. 2. Planck+WP has sensitivity to tensors only on a
narrow range of scales and the constraints on the am-

If we assume uniform priors at a pivot scale 0.001 Mpc-1, this is 
what they look like when transformed to a pivot of 0.015 Mpc-1.



Which pivot?
The pivot scale for a given dataset combination can be found by 
analysing the correlation coefficient of AT and nT. The scale where it 
vanishes is the one where the determination of the amplitude 
becomes independent of the slope.
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FIG. 3: The correlation coe�cient at di↵erent pivots for
Planck+WP. It crosses zero around k = 0.001Mpc�1.

FIG. 4: As Fig. 3, for Planck+WP+BICEP2. It crosses zero
around k = 0.015Mpc�1, in agreement with our extrapolation
technique.

tive of the uncertainty in the value we adopt.
For our main results in this section, the dataset com-

bination of interest is Planck+WP+BICEP2, and the
constraints are shown in Fig. 5. We find ln(1010AT) =
1.95+0.27

�0.20, corresponding to a central value r = 0.32. This
exceeds the value quoted by BICEP2 because most of
these models have nT > 0 and the ratio is being quoted
at a smaller scale. The significance of the detection is
not nearly as strong as the uncertainty makes it ap-
pear (remember that the lower edge of our prior is at
ln(1010AT) = �6, apparently a huge number of � away),
because the likelihood does not fall further once the am-
plitude becomes too small to significantly a↵ect the ob-
servables. The tensor spectral index is constrained as
nT = 1.8± 0.6.

FIG. 5: Combined constraints from Planck+WP+BICEP2 at
the decorrelation scale k = 0.015Mpc�1.

Our limits on nT are similar to those obtained by
Gerbino et al. [16], who quote nT = 1.67± 0.53, though
their fits did not vary other cosmological parameters and
hence are not directly comparable. Chang and Xu quote
the similar result nT = 1.70 ± 0.57 [17]. Much tighter
constraints on nT with a lower central value consistent
with zero, even just using BICEP2 data alone, were re-
ported in Refs. [15]; we have not been able to understand
why those results are so di↵erent from ours and others
reported in the literature.

The strong preference for a blue-tilted spectrum is at
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Analysis 1: No dust
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The strong preference for a blue-tilted spectrum is at

Note that the spectral index is strongly detected as positive, nT = 1.8 ± 0.6 
(as already found by other authors, eg Gerbino et al, Chang and Xu).

Our central value corresponds to r = 0.32, higher than BICEP2’s value only 
because nT is typically positive and it is being quoted on a shorter scale.



Analysis 2: With dust
It is now believed that some or all of the BICEP2 B-mode signal is 
due to polarized dust emission. Mortonson & Seljak showed that 
a generic power-law dust spectrum could adequately explain the  
B-mode spectrum and Planck (Adam et al) showed that the 
required amplitude is plausible from extrapolation from 353 GHz.

Rather than repeat the Mortonson-Seljak analysis, we envisage 
that future measurements have fixed the dust amplitude to high 
precision and investigate how it would alter the analysis.

Δ2
BB,dust (ℓ= 100) = 0.005 μK2 (optimistic)   

                          and 0.010 μK2 (pessimistic)

We keenly await news from the joint Planck/BICEP2 analysis.
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(a) �2
BB,dust = 0 (b) �2

BB,dust = 0.005µK2 (c) �2
BB,dust = 0.010µK2 (d) �2

BB,dust = 0.005µK2

k = 0.001Mpc�1

FIG. 6: Constraints on the tensor spectrum in the presence of foregrounds. (a) has zero dust as in Fig. 5. (b) has an ‘optimistic’
value for the dust amplitude �2

BB,dust = 0.005µK2, close to the lower limit in the analysis of Mortonson and Seljak, while
(c) assumes a ‘pessimistic’ value �2

BB,dust = 0.010µK2, taken from the central value in the same analysis. (a), (b) and (c)

are shown at the BICEP2’s pivot k = 0.015Mpc�1. In (d) we show constraints from the same dataset combination and the
‘optimistic’ dust amplitude, but obtained at a di↵erent scale k = 0.001Mpc�1. In this case we lose the detection of tensors.

logarithmic prior on AT, right panel. The linear prior
has the range 0 < 1010AT < 100 and the logarithmic
prior �6 < log 1010AT < 3. The blue contours in both
panels are obtained at Planck+WP+BICEP2 pivot, k =
0.015Mpc�1. We then repeat the procedure, taking a
linear and logarithmic prior in AT, but sampling instead
at Planck+WP pivot scale, k = 0.001Mpc�1. Lastly,
we take these posteriors at Planck’s pivot and transport
them to Planck+WP+BICEP2 pivot. These correspond
to the red contours, linear on the left, and logarithmic
on the right. We superpose these over the blue contours
which are originally run at the Planck+WP+BICEP2
pivot.

We are interested in identifying the prior which leaves
the posterior unchanged under variations of scale, i.e.
the prior for which the superposition of the red and blue
contours is the most similar. From Fig. 8 it is clear that
this is the case in the logarithmic prior in the right panel,
while the linear prior in the left panel gives rise to quite
di↵erent posteriors under transformation between scales.

Still, the logarithmic case shows a mismatch of the
confidence contours at large values of nT. The red con-
tours, sampled at the Planck+WP scale, exclude val-
ues of nT & 3, which does not happen in the sam-
pling at Planck+WP+BICEP2 pivot (blue). This is
not an artefact caused by the logarithmic prior but

The `optimistic’ 
scenario (just) 
preserves a two-sigma 
detection of tensors, 
but still with nT>0 at 
the same confidence.

The `pessimistic’ 
scenario completely 
loses the detection.

No dust               Optimistic              Pessimistic



We advocate a principled approach to setting constraints on 
tensor modes. Its main features are

Impose constraints on the tensor amplitude itself.

Careful choice of prior distribution

Identification of optimal pivot scale of observations.

If the BICEP2 signal were completely primordial, it is 
incompatible with the standard inflationary prediction nT<0.

Dust can readily explain some or all of the BICEP2 signal.

If the dust contribution is strong enough to allow nT<0, the 
BICEP2 detection is no longer statistically significant.

Conclusions



Standard inflation 
(nT<0) is viable.

BICEP2 has detected 
primordial tensors.

Planck constraints on 
inflation are correct.

You can have two corners of this triangle, but not all three!




