HARPS-N and SOPHIE joint follow-up of *Kepler* planetary candidates

G. Hébrard^{1,2}, A. Santerne^{3,4,5}, J.-M. Almenara³, G. Montagnier^{1,2}, G. Bruno³, M. Deleuil³, M. Havel⁴, C. Damiani³, S. C. C. Barros³, A. S. Bonomo⁶, F. Bouchy³, R. F. Díaz^{3,7}, and C. Moutou³

- ¹ Institut d'astrophysique de Paris, UMR7095 CNRS, Université Pierre & Marie Curie, 98bis boulevard Arago, 75014 Paris, France e-mail: hebrard@iap.fr
- ² Observatoire de Haute-Provence, CNRS/OAMP, 04870 Saint-Michel-l'Observatoire, France
- ³ Aix Marseille Université, CNRS, LAM (Laboratoire d'Astrophysique de Marseille) UMR 7326, 13388 Marseille, France
- ⁴ Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal
- ⁵ Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal
- ⁶ INAF Osservatorio Astrofisico di Torino, Via Osservatorio 20, 10025 Pino Torinese, Italy
- ⁷ Observatoire astronomique de l'Université de Genève, 51 chemin des Maillettes, 1290 Versoix, Switzerland

References

Bonomo, A., et al. 2015, A&A, 575, A85 Damiani, C., et al. 2015, A&A, 574, A39 Fressin, F., et al. 2013, ApJ, 766, 81 Hébrard, G., et al. 2013, A&A, 554, A114 Hébrard, G., et al. 2014, A&A, 572, A93 Santerne, A., et al. 2012, A&A, 545, A76

Abstract

Radial velocity follow-up is mandatory to establish the nature of most of the transiting planet candidates detected with *Kepler*, then to characterize them and in particular to measure their mass and eccentricity. We started follow-up programs with the spectrograph HARPS-N that benefit from our SOPHIE observations on *Kepler* Objects of Interest. The goal of our HARPS-N programs is mainly to extend the SOPHIE results toward *Kepler* planetary candidates having lower masses, smaller radii, and/or fainter host stars.

Velocimetry of Kepler transit candidates to:

- 1. Establish the planetary nature of the Kepler Objects of Interest (KOIs).
 - False Positive Rate is significant for close-in, giant KOIs: 34.8 ± 6.5 % (Santerne et al. 2012) or 29.3 ± 3.1 % (Fressin et al. 2013).
 - Even larger FPR at longer periods?
- 2. Measure these False Positive Rates.
- 3. Measure the mass and the eccentricity of the validated planets.
- 4. Search for additional, non-transiting planets in the systems.

There are the goals of our SOPHIE follow-up of KOIs. But SOPHIE has some limitations → Complement with HARPS-N

	SOPHIE	HARPS-N
Telescope	1.93-m at OHP (France)	3.58-m at TNG (Canary)
First light	2006	2012
Fed	Two optical fibers with	octagonal sections
Aperture	3"	1"
Thermally- controlled	Dispersive components in a constant-pressure tank	Whole instrument in a vacuum vessel
λ / Δλ	75,000 or 40,000	115,000
λ range	~ 385 -	693 nm
λ calibration	Thorium-argon	lamps
RV measurements	Cross-correlation functions	with numerical masks
Nights we used for KOIs	110	5

From SOPHIE to HARPS-N

1. Explore KOIs with detection hint or upper limit with SOPHIE (lower-mass planets) Giant KOIs, close-in and with long periods

KOI-200b: a low-density, giant planet

KOI-192b: a warm Saturn

Hébrard et al. (2014)

From SOPHIE to HARPS-N

2. Probe giant, close-in KOIs toward fainter targets than with SOPHIE P < 10d; d > 0.4% $K_{mag} = [14.7 - 15.3]$

KOI-889b: a massive, eccentric planet

One of the rare Darwin-stable systems

Hébrard et al. (2013); Bonomo et al. (2015); Damiani et al. (2015)

 $K = 1288 \pm 24 \text{ m/s}$ $m_{\rm p} = 9.9 \pm 0.5 \text{ M}_{\rm Jup}$ $r_{\rm p} = 1.03 \pm 0.06 \text{ R}_{\rm Jup}$ $e = 0.57 \pm 0.01$

KOI-188b: a hot Saturn

KOI-195b: a hot Saturn

KOI-830b: a hot Jupiter

Hébrard et al. (2014)

From SOPHIE to HARPS-N

3. Explore KOIs corresponding to smallerradius planets d = [0.2 - 0.4]%

P < 10d; *K*_{mag} < 14.7

Small-radius KOIs

-4

Mainly KOIs with no detected variations

Known exoplanets with measured mass and radius (circles). Among the 12 known transiting planets characterized with HARPS-N (filled circles), 6 are from the present program (red circles).

Conclusions

- Nice complementarity between SOPHIE and HARPS-N, two spectrographs with different sensitivities, precisions, and accessibilities.
- 6 new validated, characterized transiting planets (in 5 nights on HARPS-N).
- Extending the ranges in magnitude (K_{mag}), mass (m_p) , and radius (r_p) .
- Identification of additional likely planets.
- Identification of some false positives.
- Extra HARPS-N observations are mandatory to provide statistics!