

Paul Mollière¹, Roy van Boekel¹, Cornelis Dullemond², Thomas Henning¹, Christoph Mordasini³

¹Max-Planck-Institut für Astronomie, Heidelberg; ²Institut für theoretische Astrophysik, Universität Heidelberg; ³Physikalisches Institut, Universität Bern

The code:

We study the properties of atmospheres using our code by varying parameters which are important for setting the atmospheric and spectral shape.

- The H₂O \rightarrow CH₄ transition could occur at C/O as low as 0.73 for T_{eff} \lesssim 1500 K. Retrieval results like "C/O < 1" could thus indicate even lower upper boundaries for C/O, if condensation is included.
- Atmospheres with C/O ~ 1 and $T_{eff} \gtrsim 1750$ K can have inversions caused by alkali heating. It is unclear whether such planets can form, however.
- The (grid) paper will be submitted soon.
- Next we will include cloud opacities and transmission spectra.
- Inclusion of non-equilibrium chemistry