C/O or not C/O? Chemical fingerprinting of the birthplaces of exoplanets and brown dwarf companions

Tasiya Kopytova, Max Planck Institute for Astronomy

C. Hansen
M. Bonnefoy
D. Homeier
D. Hogg
N. Deacon
J. Schlieder
W. Brandner
E. Buenzli
C. Mordasini
C. Deen
F. Allard
Th. Henning
Planet formation in disks

Bill Saxton, NRAO/AUI/NSF
Planet formation in disks

Bill Saxton, NRAO/AUI/NSF
Planet formation in disks

Core accretion
Gravitational instability

Bill Saxton, NRAO/AUI/NSF
C/O ratio

Öberg et al. 2011
HR 8799c

- Planets at 15-70 AU between H₂O and CO snowlines
- Measured C/O=0.65
- Excluded: gas-only CA (C/O<0.6)

Konopacky et al. 2013
HR 8799c

- Planets at 15-70 AU between H$_2$O and CO snowlines
- Measured C/O=0.65
- Excluded: gas-only CA (C/O<0.6)

Solar abundances for HR 8799?

Konopacky et al. 2013
Why forgetting host stars?

C/O in nearby solar-like stars, Fortney (2012)
Motivation

- Analyze host stars and companions in complex
- Feasibility: can we confidently measure C/O in principle?
1. Host star survey

- FEROS at the 2.2m telescope in La Silla
- $R = 48\ 000$
- Spectral coverage: 330-920 nm
- 20 host stars with directly imaged exoplanets
2. Companion survey

- SINONI/VLT at Paranal
- JHK spectroscopy
- $R = 1500, 2000$ or 4000
- 10 planet/BD companions
AB Pic A+B

- **Host:** K2V, $T_{\text{eff}}=4800-5000\text{K}$
- **Companion:** $T_{\text{eff}}=1600-1900\text{K}$, $15M_{\text{Jup}}$ at 275 AU

Chauvin et al. (2005)
Metallicity determination

T_{eff} from color-T relations

Line synthesis

Fe abundance

C/O ratios

Oxygen
- Forbidden [O] at 6300 angstrom
- O triplet at 7772, 7774, 7775 angstrom

Carbon
- Various C lines at: 5052, 5380, 6587, 7087, 7111, 7113, 7837 angstrom
AB Pic A

- $T_{\text{eff}}=5200\pm100K$
- $[\text{Fe/H}]=-0.11\pm0.15$
- $[\text{C/O}]=-0.03\pm0.10$

Chauvin et al. (2005)
AB Pic B: chi-square minimization

- BTSettl (courtesy of D. Homeier)
- [Fe/H]: 0.0 and +0.3
- [C/O]: 0.0 and +0.2

Chauvin et al. (2005)
AB Pic B: chi-square minimization

Best fits

All bands combined and H, K separately:
Teff = 1500K, logg = 3.5, [C/O] = +0.2

J band:
Teff = 1700K, logg = 5.5, [C/O] = 0.0
Problem diagnosis

"Fitting function": $f_{\text{obs}}(\text{wavelength}) = g(\text{wavelength}) \times f_{\text{model}}(\text{wavelength})$
AB Pic B [C/O] = +0.2 (0.85 in linear scale)

Öberg et al. 2011
AB Pic B [C/O] = +0.2 (0.85 in linear scale)
AB Pic B [C/O] = +0.2 (0.85 in linear scale)
AB Pic A+B: **TENTATIVE** conclusions!

- **Host:** K2V, $T_{\text{eff}}=4800$-5000K
- **Companion:**
 - $T_{\text{eff}}=1600$-1900K
 - 15M_{Jup} at 275AU

$[\text{C/O}] = +0.2$ - formed by core accretion?

Chauvin et al. (2005)
Summary

- C/O or not C/O? Probably, **YES** for significantly non-solar but very carefully
Summary

- C/O or not C/O? Probably, **YES** for significantly non-solar but very carefully
- Diagnose why models do not fit data
Summary

- C/O or not C/O? Probably, **YES** for significantly non-solar but very carefully
- Diagnose why models do not fit data
- Different data-driven retrieval approaches?
Summary

- C/O or not C/O? Probably, **YES** for significantly non-solar but very carefully
- Diagnose why models do not fit data
- Different data-driven retrieval approaches?
- Try different models (Molliere’s and Helling’s model grids)
Summary

- C/O or not C/O? Probably, **YES** for significantly non-solar but very carefully
- Diagnose why models do not fit data
- Different data-driven retrieval approaches?
- Try different models (Molliere’s and Helling’s model grids)

Thank you!