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Basic considerations about type | migration

Disk torque on low mass planet

Planet in circular orbit embedded in a Keplerian disk

The planet excites a
one-armed spiral wake
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Basic considerations about type | migration

Disk torque on low mass planet

Planet in circular orbit embedded in a Keplerian disk

In the inner disk, the
wake is leading the

planet — positive
torque arises from
inner disk
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Basic considerations about type | migration

Disk torque on low mass planet

Planet in circular orbit embedded in a Keplerian disk

In the outer disk, the
wake is behind the

planet = negative
torque arises from
outer disk
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Basic considerations about type | migration

Net wake torque: differential torque

@ For small mass planets, wake = linear superposition of
waves launched at the Outer and Inner Lindblad
resonances
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Basic considerations about type | migration

Net wake torque: Lindblad torque

@ For small mass planets, wake = linear superposition of
waves launched at the Outer and Inner Lindblad
resonances

@ Outer and inner torque have large absolute values. The
net torque, their sum, is a not so small fraction of them
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Basic considerations about type | migration

Net wake torque: differential Lindblad torque

@ For small mass planets, wake = linear superposition of
waves launched at the Outer and Inner Lindblad
resonances

@ Outer and inner torque have large absolute values. The
net torque, their sum, is a not so small fraction of them

@ Generally negative, this torque can lead to a fast decay of
a planet toward its star. The more massive the planet, the
faster this decay

A few 10° years for 1 My, in the MMSN at 1 AU.
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Basic considerations about type | migration

Corotation torque

Horseshoe region: stream-
lines that librate near the or-
bit and exchange angular mo-
mentum with the planet as
they perform U-turns

/e
streamlines
horseshoe region
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Basic considerations about type | migration

Corotation torque

This corresponds to the coro-
tation torque

/e
streamlines
horseshoe region
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Basic considerations about type | migration

Corotation torque

corotation and differential
Lindblad torques

horseshoe region

streaﬁlines
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Basic considerations about type | migration

Corotation torque

The corotation torque de-
pends on gradients across
the orbit, in particular the gra-
dient of entropy

/e
streamlines
horseshoe region
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Heating torque

Impact of heat released by planet?

@ Torque sensitive to entropy distribution near the planet
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Heating torque

Impact of heat released by planet?

@ Torque sensitive to entropy distribution near the planet

@ Planetary mass growth releases entropy in the surrounding
nebula
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Heating torque

Impact of heat released by planet?

@ Torque sensitive to entropy distribution near the planet

@ Planetary mass growth releases entropy in the surrounding
nebula

@ — incorporate heat release to planet in disk model
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Heating torque

Heat release by planet

Small mass planet (< 5 M) bombarded by solid material which
releases heat at the rate:
£_ GMoM,
Ry

Assumes all infalling bodies reach the planet’s surface.

@ Largely satisfied for planetesimal accretion
@ Barely so for pebble accretion
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Heating torque

Heat release by planet

/ T T T T IOS
vo= NRy Qg =
k- Central\Impa 410 g
Stone I~
310° 2
2
&
5
- 110 <
£
REACHED THE CORE 4100 &
5
1.3 =
10 I
E
L DESTROYED INENVELOPE 3 10° —
QO‘L/ 1 1 1 10]
k 0.01 0.1 1 10 100

Mordasini et al. (2014)
Protoplanetary Envelope Mass [Mg]

@ Largely satisfied for planetesimal accretion
@ Barely so for pebble accretion
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Heating torque

Numerical procedure

@ Solve hydrodynamics equation on spherical mesh
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Heating torque

Numerical procedure

@ Solve hydrodynamics equation on spherical mesh

@ Solve radiative transfer equations (grey approximation +
FLD)
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Heating torque

Numerical procedure

@ Solve hydrodynamics equation on spherical mesh

@ Solve radiative transfer equations (grey approximation +
FLD)

@ Start with a disk in thermal and hydrostatic equilibrium
(heating source: viscous heating).
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Heating torque

Numerical procedure

@ Solve hydrodynamics equation on spherical mesh

@ Solve radiative transfer equations (grey approximation +
FLD)

@ Start with a disk in thermal and hydrostatic equilibrium
(heating source: viscous heating).

@ Release heat in the cells surrounding the planet
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Heating torque

Results of fiducial calculation
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Heating torque

Why is the heating torque positive - 17?

The heat released is subject to an advection-diffusion problem.

Heated gas is under-dense.
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Heating torque

Why is the heating torque positive - 17?
The heat released is subject to an advection-diffusion problem
Heated gas is under-dense.

5.41

Diffusion by radiative
transfer
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Heating torque

Why is the heating torque positive - 27

Density in the disk midplane

No heat release: large
density values in the
planet vicinity
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Heating torque

Why is the heating torque positive - 27

Density in the disk midplane

Radius (AU)

Heat release: two under-
dense lobes on each side
of planet
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Heating torque

Why is the heating torque positive - 27

Density in the disk midplane

Idealized situation
Uniform density = no net
force
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Heating torque

Why is the heating torque positive - 27

Density in the disk midplane

Net force opposite empty
- or underdense region
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Heating torque

Why is the heating torque positive - 27

Density in the disk midplane

2

3 Rear lobe more pro-

3 nounced: net force
frontward = positive net
torque
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Heating torque

Sub-Keplerian disk = asymmetric lobes

Planet is outside of corotation (white line)

Radius (AU)

Material from outer disk
receives more heat
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Heating torque

Sub-Keplerian disk = asymmetric lobes

Planet is outside of corotation (white line)
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Heating torque

Strong dependence on metallicity

Twofold dependence on metallicity

@ through the bombardment rate: scales with amount of
solids
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Heating torque

Strong dependence on metallicity

Twofold dependence on metallicity

@ through the bombardment rate: scales with amount of
solids

@ through the opacity: scales with amount of dust
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Heating torque

Strong dependence on metallicity

Twofold dependence on metallicity

@ through the bombardment rate: scales with amount of
solids

@ through the opacity: scales with amount of dust

Bifurcation depending on system’s metallicity
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Heating torque

Early Solar System

@ Our fiducial calculation has a conservative opacity
k=1cm?.g"

@ and heating torque largely insensitive to surface density
and viscosity

In the early Solar System the most massive embryos should
have undergone outward migration (if 7 < O(10°) yrs)
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Conclusions

Conclusions and perspectives

Conclusions

@ Heating torque positive in sub-Keplerian disks
@ Increases with accretion rate
@ Strongly depends on disk’s solid content

@ Yields a bifurcation of embryos’ migration behavior wrt
metallicity

@ Conservative estimates (converged): discards inner Hill
sphere

@ Flow can be complex on a smaller scale (Ormel+ 15,
Fung+ 15) = needs AMR

@ Relax fixed circular orbit. Potentially impact on e (and i ?)
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