
TESS	
  —	
  Discovering	
  New	
  Earths	
  and	
  Super-­‐Earths	
  in	
  the	
  Solar	
  Neighborhood

TESS:	
  Discovering	
  New	
  
Earths	
  and	
  Super-­‐Earths	
  in	
  
the	
  Solar	
  Neighborhood

George	
  	
  Ricker

31st	
  Interna2onal	
  Colloquium
From	
  Super-­‐Earths	
  to	
  Brown	
  Dwarfs:	
  

Who’s	
  Who?
Ins2tut	
  d’Astrophysique	
  de	
  Paris

29	
  June	
  2015

1

Transiting	
  Exoplanet	
  
Survey	
  Satellite



TESS Science Team
Ames

TESS Institutional Partners



TESS	
  —	
  Discovering	
  New	
  Earths	
  and	
  Super-­‐Earths	
  in	
  the	
  Solar	
  Neighborhood

Large	
  Area	
  Survey	
  of	
  Bright	
  Stars
§ Sun-­‐like	
  stars:	
  Ic	
  ⪅	
  2	
  to	
  Ic	
  =	
  12	
  magnitude
§ M	
  dwarfs	
  known	
  within	
  ~60	
  parsecs	
  (Ic	
  ⪅	
  14)
§ “All	
  sky”	
  observaIons	
  in	
  2	
  years:

• >	
  200,000	
  target	
  stars	
  at	
  <2	
  min	
  cadence
• >	
  20,000,000	
  stars	
  in	
  full	
  frames	
  at	
  30	
  min	
  cadence

So	
  Many	
  Stars...So	
  LiPle	
  Time

Primary	
  Goal:	
  Discover	
  Transiting	
  Earths	
  and	
  Super-­‐
Earths	
  Orbiting	
  Bright,	
  Nearby	
  Stars
§ Rocky	
  Planets	
  &	
  Water	
  Worlds
§ Habitable	
  Planets

Discover	
  the	
  “Best”	
  ~1000	
  Small	
  Exoplanets
§ “Best”	
  Means	
  “Readily	
  Characterizable”

• Bright	
  Host	
  Stars
• Measurable	
  Mass	
  &	
  Atmospheric	
  Properties

§ Present:	
  Only	
  3	
  small	
  transiting	
  exoplanets	
  orbiting	
  
bright	
  hosts	
  are	
  known
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Launch	
  in	
  August	
  2017
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TESS	
  Stars	
  Are	
  Brighter	
  than	
  Kepler	
  Stars

u How	
  do	
  we	
  arrange	
  for	
  brighter	
  stars?
§ Two	
  ways...	
  

u Increase	
  solid	
  angle	
  coverage
§ ΩTESS	
  ≃	
  400	
  ΩKepler	
  

§ Number	
  of	
  accessible	
  bright	
  stars	
  increased	
  by	
  same	
  factor

u Select	
  	
  stars	
  that	
  are	
  much	
  closer
§ TESS:	
  ~10	
  

2	
  light-­‐yr
§ Kepler:	
  ~10	
  

3	
  light-­‐yr
1/R2	
  dependence	
  means	
  TESS	
  stars	
  are	
  
~100	
  <mes	
  brighter	
  on	
  average
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Animation by Zach Berta-Thompson



1 degree

2-minute cadence
for >200,000 stars

prioritizing 
detectability of 
small planets

simulated images by Zach Berta-Thompson
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30-minute cadence
for full frame images
(>20 million stars…)

on
e 

ca
m

er
a:

24
 d

eg
re

es



Pointing of the 
TESS Cameras
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TESS 2-year sky coverage map
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TESS	
  Orbit	
  InserIon
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Uninterrupted	
  
viewing	
  for	
  >95%	
  
of	
  Qme	
  

Orbital	
  Periods:
TESS	
  	
  	
  =	
  13.7	
  days
Moon	
  =	
  27.4	
  days
➡	
  2:1	
  Resonance
➡	
  90°	
  Phasing

TESS’s	
  Novel	
  High	
  Orbit

TESS	
  Orbit	
  is	
  Stable	
  for	
  Decades (no station keeping req’d)
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LL	
  Deep	
  Deple5on	
  CCDs
(Assembly	
  by:	
  GL	
  ScienQfic)

Ricker	
  et	
  al.	
  (2014)
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Quantum	
  Efficiency	
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  BI	
  CCID-­‐80

CCID-­‐80
Thickness	
  =	
  100µm

Reference	
  CCD
Thickness	
  =	
  36	
  µm
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Points	
  ploQed:	
  MIT/LL
Experimental	
  verificaWon	
  in	
  progress	
  for	
  TESS	
  by	
  Akshata	
  Krishnamurthy	
  (MIT	
  Grad	
  Student)	
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  Engineering	
  Model	
  Camera	
  at	
  MKI
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Ricker et al. (2014)

14 Sullivan et al.

To assess the effect of cosmic rays, we consider a typical
cosmic ray flux of 5 events s−1 cm−2 and minimally-ionizing
events that deposit 100 e− µm−1 within silicon. Each pixel
has an optical exposure time of 2 sec. The accumulated im-
ages also spend an average of 1 sec in the frame-store region
of the CCD, where they are still vulnerable to cosmic rays.
Given these parameters, for each 2 min stack of values from
one pixel, there is a 10% chance of experiencing a cosmic
ray event with an energy deposition above the combined read
and zodiacal noise of 110 e−. The distribution in the energy
deposition values has a peak near 1500 e−, which is compara-
ble to the photon-counting noise of bright stars observed with
2 min cadence. Electrons from cosmic rays will therefore add
significantly to the photometric noise, but will not be easily
detected in the 2 min or 30 min data products.
Cosmic rays are far more conspicuous in the 2 sec im-

ages. Therefore, it is probably best to remove the contami-
nated pixel values before they are combined into the 2 min and
30 min stacks. The Data Handling Unit on TESS will apply a
digital filter that rejects outlier values during the stacking pro-
cess either periodically or adaptively. A possible side-effect
of this filter, depending on the algorithm used, is a reduction
in the signal-to-noise ratio to the degree that uncontaminated
data is also rejected in the absence of cosmic rays.
The exact algorithm that will be used to mitigate cosmic-

ray noise is still being studied. For the present simulations
we have budgeted for a 3% loss in the SNR. In the simulation
code, we simply raise the detection threshold (described in
Section 6.6) by 3% to compensate for the reduced SNR, and
we assume that there are no other residual effects from cosmic
rays.
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FIG. 14.— Noise model for TESS photometry. Top.—Expected standard
deviation of measurements of relative flux, as a function of apparent magni-
tude, based on 1 hour of data. For the brightest stars, the precision is limited
by the systematic noise floor of 60 ppm. For the faintest stars, the precision
is limited by noise from the zodiacal light (shown here for an ecliptic latitude
of 30◦). Over the range IC ≈ 8-13, the photon-counting noise from the star
is the dominant source of uncertainty. Bottom.—The number of pixels in the
optimal photometric aperture, chosen to maximize the SNR. The scatter in
the simulated noise performance and number of pixels is due to the random
assignment of contaminating stars and centroid offsets in the PRF.

6.5. Duration of observations
The SNR of transits or eclipses will depend critically on

how long the star is observed. Figure 1 is a sky map show-
ing the number of times that TESS will point at a given lo-
cation as a function of ecliptic coordinates. As noted above,
the simulations assign coordinates to each star through a uni-
form random distribution across the HEALPix tile to which
it belongs. The star’s ecliptic coordinates are then converted
to x and y pixel coordinates for each TESS pointing. We tally
the number of pointings for which the target falls within the
field-of-view of a TESS camera. The total amount of observ-
ing time is calculated as the total duration of all consecutive
pointings.
The duty cycle of observations must also be considered. At

each orbital perigee, TESS interrupts observations in order to
transmit data to Earth and perform other housekeeping oper-
ations. This takes approximately 0.6 days. We model this in-
terruption in the simulation, so each 13.6-day spacecraft orbit
actually results in 13.0 days of data.
The presence of the Earth or Moon in the field-of-view of

any camera will also prohibit observations. We do not model
this effect since predicting their presence depends upon the
specific launch date of TESS. However, our simulations do
show that if observations are interrupted near TESS’s orbital
apogee in addition to its perigee, then the planet yields are
approximately proportional to the duty cycle of observations.

6.6. Detection
Themodel for the detection process is highly simplified: we

adopt a threshold for the signal-to-noise ratio, and we declare
a signal to be detected if the total SNR exceeds the threshold.
In other words, the detection probability is modeled as a step
function of the computed SNR. (The matched-filter technqi-
ues of the TESS pipeline probably have a smoother profile,
such as a standard error function [Jenkins et al. 1996]). For
transiting planets, all of the observed transits contribute to the
total SNR. For eclipsing binaries, we allow both the primary
and secondary eclipses to contribute to the total SNR.
The choice of an appropriate SNR threshold was discussed

in detail by Jenkins et al. (2002) in the context of the Kepler
mission. Their criterion was that the threshold should be suffi-
ciently high to prevent more than one “detection” from being
a purely statistical fluke after analyzing all of the data from
the entire mission. We adopt the same criterion here. Since
the number of astrophysical false positives is at least several
hundred (as discussed below), this criterion allows statistical
false positives to be essentially ignored.
To determine the appropriate threshold, we use a separate

Monte Carlo simulation of the transit search. We produce
2× 105 lightcurves containing uncorrelated, Gaussian noise
and analyze them for transits in a similar manner as will be
done with real data. Then, we find the SNR threshold that
results in approximately one statistical false positive. Each
lightcurve consists of 38,880 points, representing two 27.4-
day TESS pointings with 2-minute sampling. We chose a
timeseries length of two pointings rather than one to account
for the stars observed with overlapping pointings.
To search for transits, we scan through a grid of trial peri-

ods, times of transit, and transit durations. At each grid point,
we identify the data points belonging to the candidate transit
intervals. The SNR is computed as the mean of the in-transit
data values divided by the uncertainty in the mean.
The grid of transit durations t starts with 28 min (14 sam-

14 Sullivan et al.

To assess the effect of cosmic rays, we consider a typical
cosmic ray flux of 5 events s−1 cm−2 and minimally-ionizing
events that deposit 100 e− µm−1 within silicon. Each pixel
has an optical exposure time of 2 sec. The accumulated im-
ages also spend an average of 1 sec in the frame-store region
of the CCD, where they are still vulnerable to cosmic rays.
Given these parameters, for each 2 min stack of values from
one pixel, there is a 10% chance of experiencing a cosmic
ray event with an energy deposition above the combined read
and zodiacal noise of 110 e−. The distribution in the energy
deposition values has a peak near 1500 e−, which is compara-
ble to the photon-counting noise of bright stars observed with
2 min cadence. Electrons from cosmic rays will therefore add
significantly to the photometric noise, but will not be easily
detected in the 2 min or 30 min data products.
Cosmic rays are far more conspicuous in the 2 sec im-

ages. Therefore, it is probably best to remove the contami-
nated pixel values before they are combined into the 2 min and
30 min stacks. The Data Handling Unit on TESS will apply a
digital filter that rejects outlier values during the stacking pro-
cess either periodically or adaptively. A possible side-effect
of this filter, depending on the algorithm used, is a reduction
in the signal-to-noise ratio to the degree that uncontaminated
data is also rejected in the absence of cosmic rays.
The exact algorithm that will be used to mitigate cosmic-

ray noise is still being studied. For the present simulations
we have budgeted for a 3% loss in the SNR. In the simulation
code, we simply raise the detection threshold (described in
Section 6.6) by 3% to compensate for the reduced SNR, and
we assume that there are no other residual effects from cosmic
rays.
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FIG. 14.— Noise model for TESS photometry. Top.—Expected standard
deviation of measurements of relative flux, as a function of apparent magni-
tude, based on 1 hour of data. For the brightest stars, the precision is limited
by the systematic noise floor of 60 ppm. For the faintest stars, the precision
is limited by noise from the zodiacal light (shown here for an ecliptic latitude
of 30◦). Over the range IC ≈ 8-13, the photon-counting noise from the star
is the dominant source of uncertainty. Bottom.—The number of pixels in the
optimal photometric aperture, chosen to maximize the SNR. The scatter in
the simulated noise performance and number of pixels is due to the random
assignment of contaminating stars and centroid offsets in the PRF.

6.5. Duration of observations
The SNR of transits or eclipses will depend critically on

how long the star is observed. Figure 1 is a sky map show-
ing the number of times that TESS will point at a given lo-
cation as a function of ecliptic coordinates. As noted above,
the simulations assign coordinates to each star through a uni-
form random distribution across the HEALPix tile to which
it belongs. The star’s ecliptic coordinates are then converted
to x and y pixel coordinates for each TESS pointing. We tally
the number of pointings for which the target falls within the
field-of-view of a TESS camera. The total amount of observ-
ing time is calculated as the total duration of all consecutive
pointings.
The duty cycle of observations must also be considered. At

each orbital perigee, TESS interrupts observations in order to
transmit data to Earth and perform other housekeeping oper-
ations. This takes approximately 0.6 days. We model this in-
terruption in the simulation, so each 13.6-day spacecraft orbit
actually results in 13.0 days of data.
The presence of the Earth or Moon in the field-of-view of

any camera will also prohibit observations. We do not model
this effect since predicting their presence depends upon the
specific launch date of TESS. However, our simulations do
show that if observations are interrupted near TESS’s orbital
apogee in addition to its perigee, then the planet yields are
approximately proportional to the duty cycle of observations.

6.6. Detection
Themodel for the detection process is highly simplified: we

adopt a threshold for the signal-to-noise ratio, and we declare
a signal to be detected if the total SNR exceeds the threshold.
In other words, the detection probability is modeled as a step
function of the computed SNR. (The matched-filter technqi-
ues of the TESS pipeline probably have a smoother profile,
such as a standard error function [Jenkins et al. 1996]). For
transiting planets, all of the observed transits contribute to the
total SNR. For eclipsing binaries, we allow both the primary
and secondary eclipses to contribute to the total SNR.
The choice of an appropriate SNR threshold was discussed

in detail by Jenkins et al. (2002) in the context of the Kepler
mission. Their criterion was that the threshold should be suffi-
ciently high to prevent more than one “detection” from being
a purely statistical fluke after analyzing all of the data from
the entire mission. We adopt the same criterion here. Since
the number of astrophysical false positives is at least several
hundred (as discussed below), this criterion allows statistical
false positives to be essentially ignored.
To determine the appropriate threshold, we use a separate

Monte Carlo simulation of the transit search. We produce
2× 105 lightcurves containing uncorrelated, Gaussian noise
and analyze them for transits in a similar manner as will be
done with real data. Then, we find the SNR threshold that
results in approximately one statistical false positive. Each
lightcurve consists of 38,880 points, representing two 27.4-
day TESS pointings with 2-minute sampling. We chose a
timeseries length of two pointings rather than one to account
for the stars observed with overlapping pointings.
To search for transits, we scan through a grid of trial peri-

ods, times of transit, and transit durations. At each grid point,
we identify the data points belonging to the candidate transit
intervals. The SNR is computed as the mean of the in-transit
data values divided by the uncertainty in the mean.
The grid of transit durations t starts with 28 min (14 sam-

14 Sullivan et al.

To assess the effect of cosmic rays, we consider a typical
cosmic ray flux of 5 events s−1 cm−2 and minimally-ionizing
events that deposit 100 e− µm−1 within silicon. Each pixel
has an optical exposure time of 2 sec. The accumulated im-
ages also spend an average of 1 sec in the frame-store region
of the CCD, where they are still vulnerable to cosmic rays.
Given these parameters, for each 2 min stack of values from
one pixel, there is a 10% chance of experiencing a cosmic
ray event with an energy deposition above the combined read
and zodiacal noise of 110 e−. The distribution in the energy
deposition values has a peak near 1500 e−, which is compara-
ble to the photon-counting noise of bright stars observed with
2 min cadence. Electrons from cosmic rays will therefore add
significantly to the photometric noise, but will not be easily
detected in the 2 min or 30 min data products.
Cosmic rays are far more conspicuous in the 2 sec im-

ages. Therefore, it is probably best to remove the contami-
nated pixel values before they are combined into the 2 min and
30 min stacks. The Data Handling Unit on TESS will apply a
digital filter that rejects outlier values during the stacking pro-
cess either periodically or adaptively. A possible side-effect
of this filter, depending on the algorithm used, is a reduction
in the signal-to-noise ratio to the degree that uncontaminated
data is also rejected in the absence of cosmic rays.
The exact algorithm that will be used to mitigate cosmic-

ray noise is still being studied. For the present simulations
we have budgeted for a 3% loss in the SNR. In the simulation
code, we simply raise the detection threshold (described in
Section 6.6) by 3% to compensate for the reduced SNR, and
we assume that there are no other residual effects from cosmic
rays.
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FIG. 14.— Noise model for TESS photometry. Top.—Expected standard
deviation of measurements of relative flux, as a function of apparent magni-
tude, based on 1 hour of data. For the brightest stars, the precision is limited
by the systematic noise floor of 60 ppm. For the faintest stars, the precision
is limited by noise from the zodiacal light (shown here for an ecliptic latitude
of 30◦). Over the range IC ≈ 8-13, the photon-counting noise from the star
is the dominant source of uncertainty. Bottom.—The number of pixels in the
optimal photometric aperture, chosen to maximize the SNR. The scatter in
the simulated noise performance and number of pixels is due to the random
assignment of contaminating stars and centroid offsets in the PRF.

6.5. Duration of observations
The SNR of transits or eclipses will depend critically on

how long the star is observed. Figure 1 is a sky map show-
ing the number of times that TESS will point at a given lo-
cation as a function of ecliptic coordinates. As noted above,
the simulations assign coordinates to each star through a uni-
form random distribution across the HEALPix tile to which
it belongs. The star’s ecliptic coordinates are then converted
to x and y pixel coordinates for each TESS pointing. We tally
the number of pointings for which the target falls within the
field-of-view of a TESS camera. The total amount of observ-
ing time is calculated as the total duration of all consecutive
pointings.
The duty cycle of observations must also be considered. At

each orbital perigee, TESS interrupts observations in order to
transmit data to Earth and perform other housekeeping oper-
ations. This takes approximately 0.6 days. We model this in-
terruption in the simulation, so each 13.6-day spacecraft orbit
actually results in 13.0 days of data.
The presence of the Earth or Moon in the field-of-view of

any camera will also prohibit observations. We do not model
this effect since predicting their presence depends upon the
specific launch date of TESS. However, our simulations do
show that if observations are interrupted near TESS’s orbital
apogee in addition to its perigee, then the planet yields are
approximately proportional to the duty cycle of observations.

6.6. Detection
Themodel for the detection process is highly simplified: we

adopt a threshold for the signal-to-noise ratio, and we declare
a signal to be detected if the total SNR exceeds the threshold.
In other words, the detection probability is modeled as a step
function of the computed SNR. (The matched-filter technqi-
ues of the TESS pipeline probably have a smoother profile,
such as a standard error function [Jenkins et al. 1996]). For
transiting planets, all of the observed transits contribute to the
total SNR. For eclipsing binaries, we allow both the primary
and secondary eclipses to contribute to the total SNR.
The choice of an appropriate SNR threshold was discussed

in detail by Jenkins et al. (2002) in the context of the Kepler
mission. Their criterion was that the threshold should be suffi-
ciently high to prevent more than one “detection” from being
a purely statistical fluke after analyzing all of the data from
the entire mission. We adopt the same criterion here. Since
the number of astrophysical false positives is at least several
hundred (as discussed below), this criterion allows statistical
false positives to be essentially ignored.
To determine the appropriate threshold, we use a separate

Monte Carlo simulation of the transit search. We produce
2× 105 lightcurves containing uncorrelated, Gaussian noise
and analyze them for transits in a similar manner as will be
done with real data. Then, we find the SNR threshold that
results in approximately one statistical false positive. Each
lightcurve consists of 38,880 points, representing two 27.4-
day TESS pointings with 2-minute sampling. We chose a
timeseries length of two pointings rather than one to account
for the stars observed with overlapping pointings.
To search for transits, we scan through a grid of trial peri-

ods, times of transit, and transit durations. At each grid point,
we identify the data points belonging to the candidate transit
intervals. The SNR is computed as the mean of the in-transit
data values divided by the uncertainty in the mean.
The grid of transit durations t starts with 28 min (14 sam-

14 Sullivan et al.

To assess the effect of cosmic rays, we consider a typical
cosmic ray flux of 5 events s−1 cm−2 and minimally-ionizing
events that deposit 100 e− µm−1 within silicon. Each pixel
has an optical exposure time of 2 sec. The accumulated im-
ages also spend an average of 1 sec in the frame-store region
of the CCD, where they are still vulnerable to cosmic rays.
Given these parameters, for each 2 min stack of values from
one pixel, there is a 10% chance of experiencing a cosmic
ray event with an energy deposition above the combined read
and zodiacal noise of 110 e−. The distribution in the energy
deposition values has a peak near 1500 e−, which is compara-
ble to the photon-counting noise of bright stars observed with
2 min cadence. Electrons from cosmic rays will therefore add
significantly to the photometric noise, but will not be easily
detected in the 2 min or 30 min data products.
Cosmic rays are far more conspicuous in the 2 sec im-

ages. Therefore, it is probably best to remove the contami-
nated pixel values before they are combined into the 2 min and
30 min stacks. The Data Handling Unit on TESS will apply a
digital filter that rejects outlier values during the stacking pro-
cess either periodically or adaptively. A possible side-effect
of this filter, depending on the algorithm used, is a reduction
in the signal-to-noise ratio to the degree that uncontaminated
data is also rejected in the absence of cosmic rays.
The exact algorithm that will be used to mitigate cosmic-

ray noise is still being studied. For the present simulations
we have budgeted for a 3% loss in the SNR. In the simulation
code, we simply raise the detection threshold (described in
Section 6.6) by 3% to compensate for the reduced SNR, and
we assume that there are no other residual effects from cosmic
rays.

101

102

103

104

105
σ
[p
p
m

h
r1

/2
]

 

 

Star noise
Zodiacal noise
Read noise
Sys. noise
Saturation

4 6 8 10 12 14 16
0

10

20

30

Apparent Magnitude [IC ]

P
ix
el
s
in

O
p
ti
m
a
l
A
p
er
tu
re

FIG. 14.— Noise model for TESS photometry. Top.—Expected standard
deviation of measurements of relative flux, as a function of apparent magni-
tude, based on 1 hour of data. For the brightest stars, the precision is limited
by the systematic noise floor of 60 ppm. For the faintest stars, the precision
is limited by noise from the zodiacal light (shown here for an ecliptic latitude
of 30◦). Over the range IC ≈ 8-13, the photon-counting noise from the star
is the dominant source of uncertainty. Bottom.—The number of pixels in the
optimal photometric aperture, chosen to maximize the SNR. The scatter in
the simulated noise performance and number of pixels is due to the random
assignment of contaminating stars and centroid offsets in the PRF.

6.5. Duration of observations
The SNR of transits or eclipses will depend critically on

how long the star is observed. Figure 1 is a sky map show-
ing the number of times that TESS will point at a given lo-
cation as a function of ecliptic coordinates. As noted above,
the simulations assign coordinates to each star through a uni-
form random distribution across the HEALPix tile to which
it belongs. The star’s ecliptic coordinates are then converted
to x and y pixel coordinates for each TESS pointing. We tally
the number of pointings for which the target falls within the
field-of-view of a TESS camera. The total amount of observ-
ing time is calculated as the total duration of all consecutive
pointings.
The duty cycle of observations must also be considered. At

each orbital perigee, TESS interrupts observations in order to
transmit data to Earth and perform other housekeeping oper-
ations. This takes approximately 0.6 days. We model this in-
terruption in the simulation, so each 13.6-day spacecraft orbit
actually results in 13.0 days of data.
The presence of the Earth or Moon in the field-of-view of

any camera will also prohibit observations. We do not model
this effect since predicting their presence depends upon the
specific launch date of TESS. However, our simulations do
show that if observations are interrupted near TESS’s orbital
apogee in addition to its perigee, then the planet yields are
approximately proportional to the duty cycle of observations.

6.6. Detection
Themodel for the detection process is highly simplified: we

adopt a threshold for the signal-to-noise ratio, and we declare
a signal to be detected if the total SNR exceeds the threshold.
In other words, the detection probability is modeled as a step
function of the computed SNR. (The matched-filter technqi-
ues of the TESS pipeline probably have a smoother profile,
such as a standard error function [Jenkins et al. 1996]). For
transiting planets, all of the observed transits contribute to the
total SNR. For eclipsing binaries, we allow both the primary
and secondary eclipses to contribute to the total SNR.
The choice of an appropriate SNR threshold was discussed

in detail by Jenkins et al. (2002) in the context of the Kepler
mission. Their criterion was that the threshold should be suffi-
ciently high to prevent more than one “detection” from being
a purely statistical fluke after analyzing all of the data from
the entire mission. We adopt the same criterion here. Since
the number of astrophysical false positives is at least several
hundred (as discussed below), this criterion allows statistical
false positives to be essentially ignored.
To determine the appropriate threshold, we use a separate

Monte Carlo simulation of the transit search. We produce
2× 105 lightcurves containing uncorrelated, Gaussian noise
and analyze them for transits in a similar manner as will be
done with real data. Then, we find the SNR threshold that
results in approximately one statistical false positive. Each
lightcurve consists of 38,880 points, representing two 27.4-
day TESS pointings with 2-minute sampling. We chose a
timeseries length of two pointings rather than one to account
for the stars observed with overlapping pointings.
To search for transits, we scan through a grid of trial peri-

ods, times of transit, and transit durations. At each grid point,
we identify the data points belonging to the candidate transit
intervals. The SNR is computed as the mean of the in-transit
data values divided by the uncertainty in the mean.
The grid of transit durations t starts with 28 min (14 sam-
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To assess the effect of cosmic rays, we consider a typical
cosmic ray flux of 5 events s−1 cm−2 and minimally-ionizing
events that deposit 100 e− µm−1 within silicon. Each pixel
has an optical exposure time of 2 sec. The accumulated im-
ages also spend an average of 1 sec in the frame-store region
of the CCD, where they are still vulnerable to cosmic rays.
Given these parameters, for each 2 min stack of values from
one pixel, there is a 10% chance of experiencing a cosmic
ray event with an energy deposition above the combined read
and zodiacal noise of 110 e−. The distribution in the energy
deposition values has a peak near 1500 e−, which is compara-
ble to the photon-counting noise of bright stars observed with
2 min cadence. Electrons from cosmic rays will therefore add
significantly to the photometric noise, but will not be easily
detected in the 2 min or 30 min data products.
Cosmic rays are far more conspicuous in the 2 sec im-

ages. Therefore, it is probably best to remove the contami-
nated pixel values before they are combined into the 2 min and
30 min stacks. The Data Handling Unit on TESS will apply a
digital filter that rejects outlier values during the stacking pro-
cess either periodically or adaptively. A possible side-effect
of this filter, depending on the algorithm used, is a reduction
in the signal-to-noise ratio to the degree that uncontaminated
data is also rejected in the absence of cosmic rays.
The exact algorithm that will be used to mitigate cosmic-

ray noise is still being studied. For the present simulations
we have budgeted for a 3% loss in the SNR. In the simulation
code, we simply raise the detection threshold (described in
Section 6.6) by 3% to compensate for the reduced SNR, and
we assume that there are no other residual effects from cosmic
rays.
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FIG. 14.— Noise model for TESS photometry. Top.—Expected standard
deviation of measurements of relative flux, as a function of apparent magni-
tude, based on 1 hour of data. For the brightest stars, the precision is limited
by the systematic noise floor of 60 ppm. For the faintest stars, the precision
is limited by noise from the zodiacal light (shown here for an ecliptic latitude
of 30◦). Over the range IC ≈ 8-13, the photon-counting noise from the star
is the dominant source of uncertainty. Bottom.—The number of pixels in the
optimal photometric aperture, chosen to maximize the SNR. The scatter in
the simulated noise performance and number of pixels is due to the random
assignment of contaminating stars and centroid offsets in the PRF.

6.5. Duration of observations
The SNR of transits or eclipses will depend critically on

how long the star is observed. Figure 1 is a sky map show-
ing the number of times that TESS will point at a given lo-
cation as a function of ecliptic coordinates. As noted above,
the simulations assign coordinates to each star through a uni-
form random distribution across the HEALPix tile to which
it belongs. The star’s ecliptic coordinates are then converted
to x and y pixel coordinates for each TESS pointing. We tally
the number of pointings for which the target falls within the
field-of-view of a TESS camera. The total amount of observ-
ing time is calculated as the total duration of all consecutive
pointings.
The duty cycle of observations must also be considered. At

each orbital perigee, TESS interrupts observations in order to
transmit data to Earth and perform other housekeeping oper-
ations. This takes approximately 0.6 days. We model this in-
terruption in the simulation, so each 13.6-day spacecraft orbit
actually results in 13.0 days of data.
The presence of the Earth or Moon in the field-of-view of

any camera will also prohibit observations. We do not model
this effect since predicting their presence depends upon the
specific launch date of TESS. However, our simulations do
show that if observations are interrupted near TESS’s orbital
apogee in addition to its perigee, then the planet yields are
approximately proportional to the duty cycle of observations.

6.6. Detection
Themodel for the detection process is highly simplified: we

adopt a threshold for the signal-to-noise ratio, and we declare
a signal to be detected if the total SNR exceeds the threshold.
In other words, the detection probability is modeled as a step
function of the computed SNR. (The matched-filter technqi-
ues of the TESS pipeline probably have a smoother profile,
such as a standard error function [Jenkins et al. 1996]). For
transiting planets, all of the observed transits contribute to the
total SNR. For eclipsing binaries, we allow both the primary
and secondary eclipses to contribute to the total SNR.
The choice of an appropriate SNR threshold was discussed

in detail by Jenkins et al. (2002) in the context of the Kepler
mission. Their criterion was that the threshold should be suffi-
ciently high to prevent more than one “detection” from being
a purely statistical fluke after analyzing all of the data from
the entire mission. We adopt the same criterion here. Since
the number of astrophysical false positives is at least several
hundred (as discussed below), this criterion allows statistical
false positives to be essentially ignored.
To determine the appropriate threshold, we use a separate

Monte Carlo simulation of the transit search. We produce
2× 105 lightcurves containing uncorrelated, Gaussian noise
and analyze them for transits in a similar manner as will be
done with real data. Then, we find the SNR threshold that
results in approximately one statistical false positive. Each
lightcurve consists of 38,880 points, representing two 27.4-
day TESS pointings with 2-minute sampling. We chose a
timeseries length of two pointings rather than one to account
for the stars observed with overlapping pointings.
To search for transits, we scan through a grid of trial peri-

ods, times of transit, and transit durations. At each grid point,
we identify the data points belonging to the candidate transit
intervals. The SNR is computed as the mean of the in-transit
data values divided by the uncertainty in the mean.
The grid of transit durations t starts with 28 min (14 sam-
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To assess the effect of cosmic rays, we consider a typical
cosmic ray flux of 5 events s−1 cm−2 and minimally-ionizing
events that deposit 100 e− µm−1 within silicon. Each pixel
has an optical exposure time of 2 sec. The accumulated im-
ages also spend an average of 1 sec in the frame-store region
of the CCD, where they are still vulnerable to cosmic rays.
Given these parameters, for each 2 min stack of values from
one pixel, there is a 10% chance of experiencing a cosmic
ray event with an energy deposition above the combined read
and zodiacal noise of 110 e−. The distribution in the energy
deposition values has a peak near 1500 e−, which is compara-
ble to the photon-counting noise of bright stars observed with
2 min cadence. Electrons from cosmic rays will therefore add
significantly to the photometric noise, but will not be easily
detected in the 2 min or 30 min data products.
Cosmic rays are far more conspicuous in the 2 sec im-

ages. Therefore, it is probably best to remove the contami-
nated pixel values before they are combined into the 2 min and
30 min stacks. The Data Handling Unit on TESS will apply a
digital filter that rejects outlier values during the stacking pro-
cess either periodically or adaptively. A possible side-effect
of this filter, depending on the algorithm used, is a reduction
in the signal-to-noise ratio to the degree that uncontaminated
data is also rejected in the absence of cosmic rays.
The exact algorithm that will be used to mitigate cosmic-

ray noise is still being studied. For the present simulations
we have budgeted for a 3% loss in the SNR. In the simulation
code, we simply raise the detection threshold (described in
Section 6.6) by 3% to compensate for the reduced SNR, and
we assume that there are no other residual effects from cosmic
rays.
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FIG. 14.— Noise model for TESS photometry. Top.—Expected standard
deviation of measurements of relative flux, as a function of apparent magni-
tude, based on 1 hour of data. For the brightest stars, the precision is limited
by the systematic noise floor of 60 ppm. For the faintest stars, the precision
is limited by noise from the zodiacal light (shown here for an ecliptic latitude
of 30◦). Over the range IC ≈ 8-13, the photon-counting noise from the star
is the dominant source of uncertainty. Bottom.—The number of pixels in the
optimal photometric aperture, chosen to maximize the SNR. The scatter in
the simulated noise performance and number of pixels is due to the random
assignment of contaminating stars and centroid offsets in the PRF.

6.5. Duration of observations
The SNR of transits or eclipses will depend critically on

how long the star is observed. Figure 1 is a sky map show-
ing the number of times that TESS will point at a given lo-
cation as a function of ecliptic coordinates. As noted above,
the simulations assign coordinates to each star through a uni-
form random distribution across the HEALPix tile to which
it belongs. The star’s ecliptic coordinates are then converted
to x and y pixel coordinates for each TESS pointing. We tally
the number of pointings for which the target falls within the
field-of-view of a TESS camera. The total amount of observ-
ing time is calculated as the total duration of all consecutive
pointings.
The duty cycle of observations must also be considered. At

each orbital perigee, TESS interrupts observations in order to
transmit data to Earth and perform other housekeeping oper-
ations. This takes approximately 0.6 days. We model this in-
terruption in the simulation, so each 13.6-day spacecraft orbit
actually results in 13.0 days of data.
The presence of the Earth or Moon in the field-of-view of

any camera will also prohibit observations. We do not model
this effect since predicting their presence depends upon the
specific launch date of TESS. However, our simulations do
show that if observations are interrupted near TESS’s orbital
apogee in addition to its perigee, then the planet yields are
approximately proportional to the duty cycle of observations.

6.6. Detection
Themodel for the detection process is highly simplified: we

adopt a threshold for the signal-to-noise ratio, and we declare
a signal to be detected if the total SNR exceeds the threshold.
In other words, the detection probability is modeled as a step
function of the computed SNR. (The matched-filter technqi-
ues of the TESS pipeline probably have a smoother profile,
such as a standard error function [Jenkins et al. 1996]). For
transiting planets, all of the observed transits contribute to the
total SNR. For eclipsing binaries, we allow both the primary
and secondary eclipses to contribute to the total SNR.
The choice of an appropriate SNR threshold was discussed

in detail by Jenkins et al. (2002) in the context of the Kepler
mission. Their criterion was that the threshold should be suffi-
ciently high to prevent more than one “detection” from being
a purely statistical fluke after analyzing all of the data from
the entire mission. We adopt the same criterion here. Since
the number of astrophysical false positives is at least several
hundred (as discussed below), this criterion allows statistical
false positives to be essentially ignored.
To determine the appropriate threshold, we use a separate

Monte Carlo simulation of the transit search. We produce
2× 105 lightcurves containing uncorrelated, Gaussian noise
and analyze them for transits in a similar manner as will be
done with real data. Then, we find the SNR threshold that
results in approximately one statistical false positive. Each
lightcurve consists of 38,880 points, representing two 27.4-
day TESS pointings with 2-minute sampling. We chose a
timeseries length of two pointings rather than one to account
for the stars observed with overlapping pointings.
To search for transits, we scan through a grid of trial peri-

ods, times of transit, and transit durations. At each grid point,
we identify the data points belonging to the candidate transit
intervals. The SNR is computed as the mean of the in-transit
data values divided by the uncertainty in the mean.
The grid of transit durations t starts with 28 min (14 sam-
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To assess the effect of cosmic rays, we consider a typical
cosmic ray flux of 5 events s−1 cm−2 and minimally-ionizing
events that deposit 100 e− µm−1 within silicon. Each pixel
has an optical exposure time of 2 sec. The accumulated im-
ages also spend an average of 1 sec in the frame-store region
of the CCD, where they are still vulnerable to cosmic rays.
Given these parameters, for each 2 min stack of values from
one pixel, there is a 10% chance of experiencing a cosmic
ray event with an energy deposition above the combined read
and zodiacal noise of 110 e−. The distribution in the energy
deposition values has a peak near 1500 e−, which is compara-
ble to the photon-counting noise of bright stars observed with
2 min cadence. Electrons from cosmic rays will therefore add
significantly to the photometric noise, but will not be easily
detected in the 2 min or 30 min data products.
Cosmic rays are far more conspicuous in the 2 sec im-

ages. Therefore, it is probably best to remove the contami-
nated pixel values before they are combined into the 2 min and
30 min stacks. The Data Handling Unit on TESS will apply a
digital filter that rejects outlier values during the stacking pro-
cess either periodically or adaptively. A possible side-effect
of this filter, depending on the algorithm used, is a reduction
in the signal-to-noise ratio to the degree that uncontaminated
data is also rejected in the absence of cosmic rays.
The exact algorithm that will be used to mitigate cosmic-

ray noise is still being studied. For the present simulations
we have budgeted for a 3% loss in the SNR. In the simulation
code, we simply raise the detection threshold (described in
Section 6.6) by 3% to compensate for the reduced SNR, and
we assume that there are no other residual effects from cosmic
rays.
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FIG. 14.— Noise model for TESS photometry. Top.—Expected standard
deviation of measurements of relative flux, as a function of apparent magni-
tude, based on 1 hour of data. For the brightest stars, the precision is limited
by the systematic noise floor of 60 ppm. For the faintest stars, the precision
is limited by noise from the zodiacal light (shown here for an ecliptic latitude
of 30◦). Over the range IC ≈ 8-13, the photon-counting noise from the star
is the dominant source of uncertainty. Bottom.—The number of pixels in the
optimal photometric aperture, chosen to maximize the SNR. The scatter in
the simulated noise performance and number of pixels is due to the random
assignment of contaminating stars and centroid offsets in the PRF.

6.5. Duration of observations
The SNR of transits or eclipses will depend critically on

how long the star is observed. Figure 1 is a sky map show-
ing the number of times that TESS will point at a given lo-
cation as a function of ecliptic coordinates. As noted above,
the simulations assign coordinates to each star through a uni-
form random distribution across the HEALPix tile to which
it belongs. The star’s ecliptic coordinates are then converted
to x and y pixel coordinates for each TESS pointing. We tally
the number of pointings for which the target falls within the
field-of-view of a TESS camera. The total amount of observ-
ing time is calculated as the total duration of all consecutive
pointings.
The duty cycle of observations must also be considered. At

each orbital perigee, TESS interrupts observations in order to
transmit data to Earth and perform other housekeeping oper-
ations. This takes approximately 0.6 days. We model this in-
terruption in the simulation, so each 13.6-day spacecraft orbit
actually results in 13.0 days of data.
The presence of the Earth or Moon in the field-of-view of

any camera will also prohibit observations. We do not model
this effect since predicting their presence depends upon the
specific launch date of TESS. However, our simulations do
show that if observations are interrupted near TESS’s orbital
apogee in addition to its perigee, then the planet yields are
approximately proportional to the duty cycle of observations.

6.6. Detection
Themodel for the detection process is highly simplified: we

adopt a threshold for the signal-to-noise ratio, and we declare
a signal to be detected if the total SNR exceeds the threshold.
In other words, the detection probability is modeled as a step
function of the computed SNR. (The matched-filter technqi-
ues of the TESS pipeline probably have a smoother profile,
such as a standard error function [Jenkins et al. 1996]). For
transiting planets, all of the observed transits contribute to the
total SNR. For eclipsing binaries, we allow both the primary
and secondary eclipses to contribute to the total SNR.
The choice of an appropriate SNR threshold was discussed

in detail by Jenkins et al. (2002) in the context of the Kepler
mission. Their criterion was that the threshold should be suffi-
ciently high to prevent more than one “detection” from being
a purely statistical fluke after analyzing all of the data from
the entire mission. We adopt the same criterion here. Since
the number of astrophysical false positives is at least several
hundred (as discussed below), this criterion allows statistical
false positives to be essentially ignored.
To determine the appropriate threshold, we use a separate

Monte Carlo simulation of the transit search. We produce
2× 105 lightcurves containing uncorrelated, Gaussian noise
and analyze them for transits in a similar manner as will be
done with real data. Then, we find the SNR threshold that
results in approximately one statistical false positive. Each
lightcurve consists of 38,880 points, representing two 27.4-
day TESS pointings with 2-minute sampling. We chose a
timeseries length of two pointings rather than one to account
for the stars observed with overlapping pointings.
To search for transits, we scan through a grid of trial peri-

ods, times of transit, and transit durations. At each grid point,
we identify the data points belonging to the candidate transit
intervals. The SNR is computed as the mean of the in-transit
data values divided by the uncertainty in the mean.
The grid of transit durations t starts with 28 min (14 sam-
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To assess the effect of cosmic rays, we consider a typical
cosmic ray flux of 5 events s−1 cm−2 and minimally-ionizing
events that deposit 100 e− µm−1 within silicon. Each pixel
has an optical exposure time of 2 sec. The accumulated im-
ages also spend an average of 1 sec in the frame-store region
of the CCD, where they are still vulnerable to cosmic rays.
Given these parameters, for each 2 min stack of values from
one pixel, there is a 10% chance of experiencing a cosmic
ray event with an energy deposition above the combined read
and zodiacal noise of 110 e−. The distribution in the energy
deposition values has a peak near 1500 e−, which is compara-
ble to the photon-counting noise of bright stars observed with
2 min cadence. Electrons from cosmic rays will therefore add
significantly to the photometric noise, but will not be easily
detected in the 2 min or 30 min data products.
Cosmic rays are far more conspicuous in the 2 sec im-

ages. Therefore, it is probably best to remove the contami-
nated pixel values before they are combined into the 2 min and
30 min stacks. The Data Handling Unit on TESS will apply a
digital filter that rejects outlier values during the stacking pro-
cess either periodically or adaptively. A possible side-effect
of this filter, depending on the algorithm used, is a reduction
in the signal-to-noise ratio to the degree that uncontaminated
data is also rejected in the absence of cosmic rays.
The exact algorithm that will be used to mitigate cosmic-

ray noise is still being studied. For the present simulations
we have budgeted for a 3% loss in the SNR. In the simulation
code, we simply raise the detection threshold (described in
Section 6.6) by 3% to compensate for the reduced SNR, and
we assume that there are no other residual effects from cosmic
rays.
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FIG. 14.— Noise model for TESS photometry. Top.—Expected standard
deviation of measurements of relative flux, as a function of apparent magni-
tude, based on 1 hour of data. For the brightest stars, the precision is limited
by the systematic noise floor of 60 ppm. For the faintest stars, the precision
is limited by noise from the zodiacal light (shown here for an ecliptic latitude
of 30◦). Over the range IC ≈ 8-13, the photon-counting noise from the star
is the dominant source of uncertainty. Bottom.—The number of pixels in the
optimal photometric aperture, chosen to maximize the SNR. The scatter in
the simulated noise performance and number of pixels is due to the random
assignment of contaminating stars and centroid offsets in the PRF.

6.5. Duration of observations
The SNR of transits or eclipses will depend critically on

how long the star is observed. Figure 1 is a sky map show-
ing the number of times that TESS will point at a given lo-
cation as a function of ecliptic coordinates. As noted above,
the simulations assign coordinates to each star through a uni-
form random distribution across the HEALPix tile to which
it belongs. The star’s ecliptic coordinates are then converted
to x and y pixel coordinates for each TESS pointing. We tally
the number of pointings for which the target falls within the
field-of-view of a TESS camera. The total amount of observ-
ing time is calculated as the total duration of all consecutive
pointings.
The duty cycle of observations must also be considered. At

each orbital perigee, TESS interrupts observations in order to
transmit data to Earth and perform other housekeeping oper-
ations. This takes approximately 0.6 days. We model this in-
terruption in the simulation, so each 13.6-day spacecraft orbit
actually results in 13.0 days of data.
The presence of the Earth or Moon in the field-of-view of

any camera will also prohibit observations. We do not model
this effect since predicting their presence depends upon the
specific launch date of TESS. However, our simulations do
show that if observations are interrupted near TESS’s orbital
apogee in addition to its perigee, then the planet yields are
approximately proportional to the duty cycle of observations.

6.6. Detection
Themodel for the detection process is highly simplified: we

adopt a threshold for the signal-to-noise ratio, and we declare
a signal to be detected if the total SNR exceeds the threshold.
In other words, the detection probability is modeled as a step
function of the computed SNR. (The matched-filter technqi-
ues of the TESS pipeline probably have a smoother profile,
such as a standard error function [Jenkins et al. 1996]). For
transiting planets, all of the observed transits contribute to the
total SNR. For eclipsing binaries, we allow both the primary
and secondary eclipses to contribute to the total SNR.
The choice of an appropriate SNR threshold was discussed

in detail by Jenkins et al. (2002) in the context of the Kepler
mission. Their criterion was that the threshold should be suffi-
ciently high to prevent more than one “detection” from being
a purely statistical fluke after analyzing all of the data from
the entire mission. We adopt the same criterion here. Since
the number of astrophysical false positives is at least several
hundred (as discussed below), this criterion allows statistical
false positives to be essentially ignored.
To determine the appropriate threshold, we use a separate

Monte Carlo simulation of the transit search. We produce
2× 105 lightcurves containing uncorrelated, Gaussian noise
and analyze them for transits in a similar manner as will be
done with real data. Then, we find the SNR threshold that
results in approximately one statistical false positive. Each
lightcurve consists of 38,880 points, representing two 27.4-
day TESS pointings with 2-minute sampling. We chose a
timeseries length of two pointings rather than one to account
for the stars observed with overlapping pointings.
To search for transits, we scan through a grid of trial peri-

ods, times of transit, and transit durations. At each grid point,
we identify the data points belonging to the candidate transit
intervals. The SNR is computed as the mean of the in-transit
data values divided by the uncertainty in the mean.
The grid of transit durations t starts with 28 min (14 sam-
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To assess the effect of cosmic rays, we consider a typical
cosmic ray flux of 5 events s−1 cm−2 and minimally-ionizing
events that deposit 100 e− µm−1 within silicon. Each pixel
has an optical exposure time of 2 sec. The accumulated im-
ages also spend an average of 1 sec in the frame-store region
of the CCD, where they are still vulnerable to cosmic rays.
Given these parameters, for each 2 min stack of values from
one pixel, there is a 10% chance of experiencing a cosmic
ray event with an energy deposition above the combined read
and zodiacal noise of 110 e−. The distribution in the energy
deposition values has a peak near 1500 e−, which is compara-
ble to the photon-counting noise of bright stars observed with
2 min cadence. Electrons from cosmic rays will therefore add
significantly to the photometric noise, but will not be easily
detected in the 2 min or 30 min data products.
Cosmic rays are far more conspicuous in the 2 sec im-

ages. Therefore, it is probably best to remove the contami-
nated pixel values before they are combined into the 2 min and
30 min stacks. The Data Handling Unit on TESS will apply a
digital filter that rejects outlier values during the stacking pro-
cess either periodically or adaptively. A possible side-effect
of this filter, depending on the algorithm used, is a reduction
in the signal-to-noise ratio to the degree that uncontaminated
data is also rejected in the absence of cosmic rays.
The exact algorithm that will be used to mitigate cosmic-

ray noise is still being studied. For the present simulations
we have budgeted for a 3% loss in the SNR. In the simulation
code, we simply raise the detection threshold (described in
Section 6.6) by 3% to compensate for the reduced SNR, and
we assume that there are no other residual effects from cosmic
rays.
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FIG. 14.— Noise model for TESS photometry. Top.—Expected standard
deviation of measurements of relative flux, as a function of apparent magni-
tude, based on 1 hour of data. For the brightest stars, the precision is limited
by the systematic noise floor of 60 ppm. For the faintest stars, the precision
is limited by noise from the zodiacal light (shown here for an ecliptic latitude
of 30◦). Over the range IC ≈ 8-13, the photon-counting noise from the star
is the dominant source of uncertainty. Bottom.—The number of pixels in the
optimal photometric aperture, chosen to maximize the SNR. The scatter in
the simulated noise performance and number of pixels is due to the random
assignment of contaminating stars and centroid offsets in the PRF.

6.5. Duration of observations
The SNR of transits or eclipses will depend critically on

how long the star is observed. Figure 1 is a sky map show-
ing the number of times that TESS will point at a given lo-
cation as a function of ecliptic coordinates. As noted above,
the simulations assign coordinates to each star through a uni-
form random distribution across the HEALPix tile to which
it belongs. The star’s ecliptic coordinates are then converted
to x and y pixel coordinates for each TESS pointing. We tally
the number of pointings for which the target falls within the
field-of-view of a TESS camera. The total amount of observ-
ing time is calculated as the total duration of all consecutive
pointings.
The duty cycle of observations must also be considered. At

each orbital perigee, TESS interrupts observations in order to
transmit data to Earth and perform other housekeeping oper-
ations. This takes approximately 0.6 days. We model this in-
terruption in the simulation, so each 13.6-day spacecraft orbit
actually results in 13.0 days of data.
The presence of the Earth or Moon in the field-of-view of

any camera will also prohibit observations. We do not model
this effect since predicting their presence depends upon the
specific launch date of TESS. However, our simulations do
show that if observations are interrupted near TESS’s orbital
apogee in addition to its perigee, then the planet yields are
approximately proportional to the duty cycle of observations.

6.6. Detection
Themodel for the detection process is highly simplified: we

adopt a threshold for the signal-to-noise ratio, and we declare
a signal to be detected if the total SNR exceeds the threshold.
In other words, the detection probability is modeled as a step
function of the computed SNR. (The matched-filter technqi-
ues of the TESS pipeline probably have a smoother profile,
such as a standard error function [Jenkins et al. 1996]). For
transiting planets, all of the observed transits contribute to the
total SNR. For eclipsing binaries, we allow both the primary
and secondary eclipses to contribute to the total SNR.
The choice of an appropriate SNR threshold was discussed

in detail by Jenkins et al. (2002) in the context of the Kepler
mission. Their criterion was that the threshold should be suffi-
ciently high to prevent more than one “detection” from being
a purely statistical fluke after analyzing all of the data from
the entire mission. We adopt the same criterion here. Since
the number of astrophysical false positives is at least several
hundred (as discussed below), this criterion allows statistical
false positives to be essentially ignored.
To determine the appropriate threshold, we use a separate

Monte Carlo simulation of the transit search. We produce
2× 105 lightcurves containing uncorrelated, Gaussian noise
and analyze them for transits in a similar manner as will be
done with real data. Then, we find the SNR threshold that
results in approximately one statistical false positive. Each
lightcurve consists of 38,880 points, representing two 27.4-
day TESS pointings with 2-minute sampling. We chose a
timeseries length of two pointings rather than one to account
for the stars observed with overlapping pointings.
To search for transits, we scan through a grid of trial peri-

ods, times of transit, and transit durations. At each grid point,
we identify the data points belonging to the candidate transit
intervals. The SNR is computed as the mean of the in-transit
data values divided by the uncertainty in the mean.
The grid of transit durations t starts with 28 min (14 sam-
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To assess the effect of cosmic rays, we consider a typical
cosmic ray flux of 5 events s−1 cm−2 and minimally-ionizing
events that deposit 100 e− µm−1 within silicon. Each pixel
has an optical exposure time of 2 sec. The accumulated im-
ages also spend an average of 1 sec in the frame-store region
of the CCD, where they are still vulnerable to cosmic rays.
Given these parameters, for each 2 min stack of values from
one pixel, there is a 10% chance of experiencing a cosmic
ray event with an energy deposition above the combined read
and zodiacal noise of 110 e−. The distribution in the energy
deposition values has a peak near 1500 e−, which is compara-
ble to the photon-counting noise of bright stars observed with
2 min cadence. Electrons from cosmic rays will therefore add
significantly to the photometric noise, but will not be easily
detected in the 2 min or 30 min data products.
Cosmic rays are far more conspicuous in the 2 sec im-

ages. Therefore, it is probably best to remove the contami-
nated pixel values before they are combined into the 2 min and
30 min stacks. The Data Handling Unit on TESS will apply a
digital filter that rejects outlier values during the stacking pro-
cess either periodically or adaptively. A possible side-effect
of this filter, depending on the algorithm used, is a reduction
in the signal-to-noise ratio to the degree that uncontaminated
data is also rejected in the absence of cosmic rays.
The exact algorithm that will be used to mitigate cosmic-

ray noise is still being studied. For the present simulations
we have budgeted for a 3% loss in the SNR. In the simulation
code, we simply raise the detection threshold (described in
Section 6.6) by 3% to compensate for the reduced SNR, and
we assume that there are no other residual effects from cosmic
rays.
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FIG. 14.— Noise model for TESS photometry. Top.—Expected standard
deviation of measurements of relative flux, as a function of apparent magni-
tude, based on 1 hour of data. For the brightest stars, the precision is limited
by the systematic noise floor of 60 ppm. For the faintest stars, the precision
is limited by noise from the zodiacal light (shown here for an ecliptic latitude
of 30◦). Over the range IC ≈ 8-13, the photon-counting noise from the star
is the dominant source of uncertainty. Bottom.—The number of pixels in the
optimal photometric aperture, chosen to maximize the SNR. The scatter in
the simulated noise performance and number of pixels is due to the random
assignment of contaminating stars and centroid offsets in the PRF.

6.5. Duration of observations
The SNR of transits or eclipses will depend critically on

how long the star is observed. Figure 1 is a sky map show-
ing the number of times that TESS will point at a given lo-
cation as a function of ecliptic coordinates. As noted above,
the simulations assign coordinates to each star through a uni-
form random distribution across the HEALPix tile to which
it belongs. The star’s ecliptic coordinates are then converted
to x and y pixel coordinates for each TESS pointing. We tally
the number of pointings for which the target falls within the
field-of-view of a TESS camera. The total amount of observ-
ing time is calculated as the total duration of all consecutive
pointings.
The duty cycle of observations must also be considered. At

each orbital perigee, TESS interrupts observations in order to
transmit data to Earth and perform other housekeeping oper-
ations. This takes approximately 0.6 days. We model this in-
terruption in the simulation, so each 13.6-day spacecraft orbit
actually results in 13.0 days of data.
The presence of the Earth or Moon in the field-of-view of

any camera will also prohibit observations. We do not model
this effect since predicting their presence depends upon the
specific launch date of TESS. However, our simulations do
show that if observations are interrupted near TESS’s orbital
apogee in addition to its perigee, then the planet yields are
approximately proportional to the duty cycle of observations.

6.6. Detection
Themodel for the detection process is highly simplified: we

adopt a threshold for the signal-to-noise ratio, and we declare
a signal to be detected if the total SNR exceeds the threshold.
In other words, the detection probability is modeled as a step
function of the computed SNR. (The matched-filter technqi-
ues of the TESS pipeline probably have a smoother profile,
such as a standard error function [Jenkins et al. 1996]). For
transiting planets, all of the observed transits contribute to the
total SNR. For eclipsing binaries, we allow both the primary
and secondary eclipses to contribute to the total SNR.
The choice of an appropriate SNR threshold was discussed

in detail by Jenkins et al. (2002) in the context of the Kepler
mission. Their criterion was that the threshold should be suffi-
ciently high to prevent more than one “detection” from being
a purely statistical fluke after analyzing all of the data from
the entire mission. We adopt the same criterion here. Since
the number of astrophysical false positives is at least several
hundred (as discussed below), this criterion allows statistical
false positives to be essentially ignored.
To determine the appropriate threshold, we use a separate

Monte Carlo simulation of the transit search. We produce
2× 105 lightcurves containing uncorrelated, Gaussian noise
and analyze them for transits in a similar manner as will be
done with real data. Then, we find the SNR threshold that
results in approximately one statistical false positive. Each
lightcurve consists of 38,880 points, representing two 27.4-
day TESS pointings with 2-minute sampling. We chose a
timeseries length of two pointings rather than one to account
for the stars observed with overlapping pointings.
To search for transits, we scan through a grid of trial peri-

ods, times of transit, and transit durations. At each grid point,
we identify the data points belonging to the candidate transit
intervals. The SNR is computed as the mean of the in-transit
data values divided by the uncertainty in the mean.
The grid of transit durations t starts with 28 min (14 sam-
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To assess the effect of cosmic rays, we consider a typical
cosmic ray flux of 5 events s−1 cm−2 and minimally-ionizing
events that deposit 100 e− µm−1 within silicon. Each pixel
has an optical exposure time of 2 sec. The accumulated im-
ages also spend an average of 1 sec in the frame-store region
of the CCD, where they are still vulnerable to cosmic rays.
Given these parameters, for each 2 min stack of values from
one pixel, there is a 10% chance of experiencing a cosmic
ray event with an energy deposition above the combined read
and zodiacal noise of 110 e−. The distribution in the energy
deposition values has a peak near 1500 e−, which is compara-
ble to the photon-counting noise of bright stars observed with
2 min cadence. Electrons from cosmic rays will therefore add
significantly to the photometric noise, but will not be easily
detected in the 2 min or 30 min data products.
Cosmic rays are far more conspicuous in the 2 sec im-

ages. Therefore, it is probably best to remove the contami-
nated pixel values before they are combined into the 2 min and
30 min stacks. The Data Handling Unit on TESS will apply a
digital filter that rejects outlier values during the stacking pro-
cess either periodically or adaptively. A possible side-effect
of this filter, depending on the algorithm used, is a reduction
in the signal-to-noise ratio to the degree that uncontaminated
data is also rejected in the absence of cosmic rays.
The exact algorithm that will be used to mitigate cosmic-

ray noise is still being studied. For the present simulations
we have budgeted for a 3% loss in the SNR. In the simulation
code, we simply raise the detection threshold (described in
Section 6.6) by 3% to compensate for the reduced SNR, and
we assume that there are no other residual effects from cosmic
rays.
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FIG. 14.— Noise model for TESS photometry. Top.—Expected standard
deviation of measurements of relative flux, as a function of apparent magni-
tude, based on 1 hour of data. For the brightest stars, the precision is limited
by the systematic noise floor of 60 ppm. For the faintest stars, the precision
is limited by noise from the zodiacal light (shown here for an ecliptic latitude
of 30◦). Over the range IC ≈ 8-13, the photon-counting noise from the star
is the dominant source of uncertainty. Bottom.—The number of pixels in the
optimal photometric aperture, chosen to maximize the SNR. The scatter in
the simulated noise performance and number of pixels is due to the random
assignment of contaminating stars and centroid offsets in the PRF.

6.5. Duration of observations
The SNR of transits or eclipses will depend critically on

how long the star is observed. Figure 1 is a sky map show-
ing the number of times that TESS will point at a given lo-
cation as a function of ecliptic coordinates. As noted above,
the simulations assign coordinates to each star through a uni-
form random distribution across the HEALPix tile to which
it belongs. The star’s ecliptic coordinates are then converted
to x and y pixel coordinates for each TESS pointing. We tally
the number of pointings for which the target falls within the
field-of-view of a TESS camera. The total amount of observ-
ing time is calculated as the total duration of all consecutive
pointings.
The duty cycle of observations must also be considered. At

each orbital perigee, TESS interrupts observations in order to
transmit data to Earth and perform other housekeeping oper-
ations. This takes approximately 0.6 days. We model this in-
terruption in the simulation, so each 13.6-day spacecraft orbit
actually results in 13.0 days of data.
The presence of the Earth or Moon in the field-of-view of

any camera will also prohibit observations. We do not model
this effect since predicting their presence depends upon the
specific launch date of TESS. However, our simulations do
show that if observations are interrupted near TESS’s orbital
apogee in addition to its perigee, then the planet yields are
approximately proportional to the duty cycle of observations.

6.6. Detection
Themodel for the detection process is highly simplified: we

adopt a threshold for the signal-to-noise ratio, and we declare
a signal to be detected if the total SNR exceeds the threshold.
In other words, the detection probability is modeled as a step
function of the computed SNR. (The matched-filter technqi-
ues of the TESS pipeline probably have a smoother profile,
such as a standard error function [Jenkins et al. 1996]). For
transiting planets, all of the observed transits contribute to the
total SNR. For eclipsing binaries, we allow both the primary
and secondary eclipses to contribute to the total SNR.
The choice of an appropriate SNR threshold was discussed

in detail by Jenkins et al. (2002) in the context of the Kepler
mission. Their criterion was that the threshold should be suffi-
ciently high to prevent more than one “detection” from being
a purely statistical fluke after analyzing all of the data from
the entire mission. We adopt the same criterion here. Since
the number of astrophysical false positives is at least several
hundred (as discussed below), this criterion allows statistical
false positives to be essentially ignored.
To determine the appropriate threshold, we use a separate

Monte Carlo simulation of the transit search. We produce
2× 105 lightcurves containing uncorrelated, Gaussian noise
and analyze them for transits in a similar manner as will be
done with real data. Then, we find the SNR threshold that
results in approximately one statistical false positive. Each
lightcurve consists of 38,880 points, representing two 27.4-
day TESS pointings with 2-minute sampling. We chose a
timeseries length of two pointings rather than one to account
for the stars observed with overlapping pointings.
To search for transits, we scan through a grid of trial peri-

ods, times of transit, and transit durations. At each grid point,
we identify the data points belonging to the candidate transit
intervals. The SNR is computed as the mean of the in-transit
data values divided by the uncertainty in the mean.
The grid of transit durations t starts with 28 min (14 sam-
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To assess the effect of cosmic rays, we consider a typical
cosmic ray flux of 5 events s−1 cm−2 and minimally-ionizing
events that deposit 100 e− µm−1 within silicon. Each pixel
has an optical exposure time of 2 sec. The accumulated im-
ages also spend an average of 1 sec in the frame-store region
of the CCD, where they are still vulnerable to cosmic rays.
Given these parameters, for each 2 min stack of values from
one pixel, there is a 10% chance of experiencing a cosmic
ray event with an energy deposition above the combined read
and zodiacal noise of 110 e−. The distribution in the energy
deposition values has a peak near 1500 e−, which is compara-
ble to the photon-counting noise of bright stars observed with
2 min cadence. Electrons from cosmic rays will therefore add
significantly to the photometric noise, but will not be easily
detected in the 2 min or 30 min data products.
Cosmic rays are far more conspicuous in the 2 sec im-

ages. Therefore, it is probably best to remove the contami-
nated pixel values before they are combined into the 2 min and
30 min stacks. The Data Handling Unit on TESS will apply a
digital filter that rejects outlier values during the stacking pro-
cess either periodically or adaptively. A possible side-effect
of this filter, depending on the algorithm used, is a reduction
in the signal-to-noise ratio to the degree that uncontaminated
data is also rejected in the absence of cosmic rays.
The exact algorithm that will be used to mitigate cosmic-

ray noise is still being studied. For the present simulations
we have budgeted for a 3% loss in the SNR. In the simulation
code, we simply raise the detection threshold (described in
Section 6.6) by 3% to compensate for the reduced SNR, and
we assume that there are no other residual effects from cosmic
rays.

101

102

103

104

105
σ
[p
p
m

h
r1

/2
]

 

 

Star noise
Zodiacal noise
Read noise
Sys. noise
Saturation

4 6 8 10 12 14 16
0

10

20

30

Apparent Magnitude [IC ]

P
ix
el
s
in

O
p
ti
m
a
l
A
p
er
tu
re

FIG. 14.— Noise model for TESS photometry. Top.—Expected standard
deviation of measurements of relative flux, as a function of apparent magni-
tude, based on 1 hour of data. For the brightest stars, the precision is limited
by the systematic noise floor of 60 ppm. For the faintest stars, the precision
is limited by noise from the zodiacal light (shown here for an ecliptic latitude
of 30◦). Over the range IC ≈ 8-13, the photon-counting noise from the star
is the dominant source of uncertainty. Bottom.—The number of pixels in the
optimal photometric aperture, chosen to maximize the SNR. The scatter in
the simulated noise performance and number of pixels is due to the random
assignment of contaminating stars and centroid offsets in the PRF.

6.5. Duration of observations
The SNR of transits or eclipses will depend critically on

how long the star is observed. Figure 1 is a sky map show-
ing the number of times that TESS will point at a given lo-
cation as a function of ecliptic coordinates. As noted above,
the simulations assign coordinates to each star through a uni-
form random distribution across the HEALPix tile to which
it belongs. The star’s ecliptic coordinates are then converted
to x and y pixel coordinates for each TESS pointing. We tally
the number of pointings for which the target falls within the
field-of-view of a TESS camera. The total amount of observ-
ing time is calculated as the total duration of all consecutive
pointings.
The duty cycle of observations must also be considered. At

each orbital perigee, TESS interrupts observations in order to
transmit data to Earth and perform other housekeeping oper-
ations. This takes approximately 0.6 days. We model this in-
terruption in the simulation, so each 13.6-day spacecraft orbit
actually results in 13.0 days of data.
The presence of the Earth or Moon in the field-of-view of

any camera will also prohibit observations. We do not model
this effect since predicting their presence depends upon the
specific launch date of TESS. However, our simulations do
show that if observations are interrupted near TESS’s orbital
apogee in addition to its perigee, then the planet yields are
approximately proportional to the duty cycle of observations.

6.6. Detection
Themodel for the detection process is highly simplified: we

adopt a threshold for the signal-to-noise ratio, and we declare
a signal to be detected if the total SNR exceeds the threshold.
In other words, the detection probability is modeled as a step
function of the computed SNR. (The matched-filter technqi-
ues of the TESS pipeline probably have a smoother profile,
such as a standard error function [Jenkins et al. 1996]). For
transiting planets, all of the observed transits contribute to the
total SNR. For eclipsing binaries, we allow both the primary
and secondary eclipses to contribute to the total SNR.
The choice of an appropriate SNR threshold was discussed

in detail by Jenkins et al. (2002) in the context of the Kepler
mission. Their criterion was that the threshold should be suffi-
ciently high to prevent more than one “detection” from being
a purely statistical fluke after analyzing all of the data from
the entire mission. We adopt the same criterion here. Since
the number of astrophysical false positives is at least several
hundred (as discussed below), this criterion allows statistical
false positives to be essentially ignored.
To determine the appropriate threshold, we use a separate

Monte Carlo simulation of the transit search. We produce
2× 105 lightcurves containing uncorrelated, Gaussian noise
and analyze them for transits in a similar manner as will be
done with real data. Then, we find the SNR threshold that
results in approximately one statistical false positive. Each
lightcurve consists of 38,880 points, representing two 27.4-
day TESS pointings with 2-minute sampling. We chose a
timeseries length of two pointings rather than one to account
for the stars observed with overlapping pointings.
To search for transits, we scan through a grid of trial peri-

ods, times of transit, and transit durations. At each grid point,
we identify the data points belonging to the candidate transit
intervals. The SNR is computed as the mean of the in-transit
data values divided by the uncertainty in the mean.
The grid of transit durations t starts with 28 min (14 sam-

Photometric Noise in 1 Hour

1%
for 16th mag.

Ricker et al. (2014)TESS	
  —	
  Discovering	
  New	
  Earths	
  and	
  Super-­‐Earths	
  in	
  the	
  Solar	
  Neighborhood



Ecliptic 
Coordinates

Detectable planets around 
20,000,000 stars in full imagesSullivan et al. (arXiv:1506.08845)

Simulated TESS detections

Detectable planets around 200,000 
pre-selected stars

TESS: Simulated Detections 19

 

 TESS Planet Detections

Full-Frame Images
2x105 Target Stars

TESS Eclipsing Binary Detections
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of longitude are spaced by 60◦ . Top.—Planet detections. Red points represent planets detected around target stars (2 min cadence). Blue points represent planets
detected around stars that are only observed in the full-frame images (30 min cadence). Note the enhancement in the planet yield near the ecliptic poles, which
TESS observes for the longest duration. Note also that the inner 6◦ of the ecliptic is not observed. Bottom.—Astrophysical false positive detections, using the
same color scheme. For clarity, only 10% of the false positives detected in the full-frame images are shown. (All other categories show 100% of the detections
from one trial.) Note the enhancement in the detection rate near the galactic plane, which is stronger for false positives than for planets.
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FIG. 20.— The distribution of detected planets on the period–radius plane.
The shading of the 2-d histogram is the same as in Figure 8. The sawtooth
patterns in the radius and period histograms are an artefact of the planet oc-
currence rates having coarse bin sizes in radius and period combined with the
sensitivity of TESS favoring planets with larger radii and shorter periods.
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FIG. 18.— Mean numbers of planets and eclipsing binaries that are detected in the TESS simulation. Results are shown for the 2× 105 target stars that are
observed with 2 min time sampling as well as stars in the full-frame images that are observed with 30 min sampling. The statistical error from Poisson fluctuations
and the input planet occurrence rates are shown. For eclipsing binaries, additional systematic error could be as high as ≈50% (see text).

maximum number of target stars (2× 105).
Diluting flux.—Whenever the photometric aperture con-

tains flux from neighboring stars, the measured transit depth
will be smaller than it would be if the star were observed in
isolation. If this effect is not taken into account (by using ob-
servations with higher angular resolution), then the planet’s
radius will be underestimated. The source of the “diluting
flux” can be a star that is gravitationally bound to the target
star, or it can be one or more completely unrelated stars along
the same line-of-sight. In our simulation, we find that 12% of
detected planets suffer dilution by more than > 21%, making
them vulnerable to radius underestimation by> 10%. For 6%
of planets, the radii could be underestimated by > 20%. We
note that we do not consider cases of underestimated planet
sizes to be “false positives”, in contrast to Fressin et al. (2013).
Those authors considered the detection of transits with signif-
icant dilution to be a false positive because they were con-
cerned with determining the occurrence rates of planets as a
function of planet radius.
A separate scenario in which the transit depth can be diluted

is when the transiting planet is actually orbiting a background
star rather than the target star. Simulating these background
transiting planets is a more computationally challenging prob-
lem which we conducted separately from the main simula-
tions. We generated planets around the background stars rep-
resented by in “faint” star catalog and simulated the detection
of the transiting planets blended with target stars. We found
this type of transit detection to be very rare. Of the 2×105
target stars, we find that only ∼1 planet transiting a back-
ground star will be detectable with TESS. In the 30-minute
full-frame images, approximately 70 such planets might be
detected. The transit depths of these planets must be very deep
to overcome the diluting flux of the brighter target star. In the
simulations, the median radius of blended transiting planets is
17R⊕. Our conclusion is in agreement with those of Fressin
et al. (2013), who found that transits of background stars are
a less important source of detections than transits of planets

around gravitationally bound companion stars (see their Fig-
ure 10).
Single-transit detections.—In a few notable cases, the SNR

of a transit exceeds the threshold of 7.3, but only a single
transit is observed. We expect 110 such planets to be detected
with one transit. These are not counted as detections in the
tallies given above, but they are included in Figure 21 as gray
points. These planets have longer periods and lower equilib-
rium temperatures than the rest of the TESS sample. There
may even be additional single-transit detections from plan-
ets with orbital periods exceeding one year, which we have
not modeled at all. Although the periods will not be well-
constrained using TESS data alone, and the probability of a
“detection” being a statistical fluke is higher, it may still be
worthwhile to conduct follow-up observations of these stars.
The single-transit detections have a median planet size of
∼3 R⊕, a median orbital period of ∼30 days, and a median
insolation of 1.9 S⊕.

7.2. False positives
Among the 2× 105 target stars, TESS detects 1103±33

eclipsing binary systems along with the transiting planets.
The uncertainty in this figure is based only on the Pois-
son fluctuations; we acknowledge that the true uncertainty is
likely to be significantly larger. Based on our comparisonwith
the Kepler eclipsing binary catalog (see Section 4.2), the un-
certainty may be as large as 80% for relatively low galactic
latitudes.
The false-positives can be divided into the following cases:

1. Eclipsing Binary (EB): The target star is an eclipsing
binary with grazing eclipses. There are 250±16 detec-
tions of EBs.

2. Hierarchical Eclipsing Binary (HEB): The target star is
a triple or quadruple system in which one pair of stars
is eclipsing. There are 410 ±20 detections of HEBs.
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FIG. 18.— Mean numbers of planets and eclipsing binaries that are detected in the TESS simulation. Results are shown for the 2× 105 target stars that are
observed with 2 min time sampling as well as stars in the full-frame images that are observed with 30 min sampling. The statistical error from Poisson fluctuations
and the input planet occurrence rates are shown. For eclipsing binaries, additional systematic error could be as high as ≈50% (see text).

maximum number of target stars (2× 105).
Diluting flux.—Whenever the photometric aperture con-

tains flux from neighboring stars, the measured transit depth
will be smaller than it would be if the star were observed in
isolation. If this effect is not taken into account (by using ob-
servations with higher angular resolution), then the planet’s
radius will be underestimated. The source of the “diluting
flux” can be a star that is gravitationally bound to the target
star, or it can be one or more completely unrelated stars along
the same line-of-sight. In our simulation, we find that 12% of
detected planets suffer dilution by more than > 21%, making
them vulnerable to radius underestimation by> 10%. For 6%
of planets, the radii could be underestimated by > 20%. We
note that we do not consider cases of underestimated planet
sizes to be “false positives”, in contrast to Fressin et al. (2013).
Those authors considered the detection of transits with signif-
icant dilution to be a false positive because they were con-
cerned with determining the occurrence rates of planets as a
function of planet radius.
A separate scenario in which the transit depth can be diluted

is when the transiting planet is actually orbiting a background
star rather than the target star. Simulating these background
transiting planets is a more computationally challenging prob-
lem which we conducted separately from the main simula-
tions. We generated planets around the background stars rep-
resented by in “faint” star catalog and simulated the detection
of the transiting planets blended with target stars. We found
this type of transit detection to be very rare. Of the 2×105
target stars, we find that only ∼1 planet transiting a back-
ground star will be detectable with TESS. In the 30-minute
full-frame images, approximately 70 such planets might be
detected. The transit depths of these planets must be very deep
to overcome the diluting flux of the brighter target star. In the
simulations, the median radius of blended transiting planets is
17R⊕. Our conclusion is in agreement with those of Fressin
et al. (2013), who found that transits of background stars are
a less important source of detections than transits of planets

around gravitationally bound companion stars (see their Fig-
ure 10).
Single-transit detections.—In a few notable cases, the SNR

of a transit exceeds the threshold of 7.3, but only a single
transit is observed. We expect 110 such planets to be detected
with one transit. These are not counted as detections in the
tallies given above, but they are included in Figure 21 as gray
points. These planets have longer periods and lower equilib-
rium temperatures than the rest of the TESS sample. There
may even be additional single-transit detections from plan-
ets with orbital periods exceeding one year, which we have
not modeled at all. Although the periods will not be well-
constrained using TESS data alone, and the probability of a
“detection” being a statistical fluke is higher, it may still be
worthwhile to conduct follow-up observations of these stars.
The single-transit detections have a median planet size of
∼3 R⊕, a median orbital period of ∼30 days, and a median
insolation of 1.9 S⊕.

7.2. False positives
Among the 2× 105 target stars, TESS detects 1103±33

eclipsing binary systems along with the transiting planets.
The uncertainty in this figure is based only on the Pois-
son fluctuations; we acknowledge that the true uncertainty is
likely to be significantly larger. Based on our comparisonwith
the Kepler eclipsing binary catalog (see Section 4.2), the un-
certainty may be as large as 80% for relatively low galactic
latitudes.
The false-positives can be divided into the following cases:

1. Eclipsing Binary (EB): The target star is an eclipsing
binary with grazing eclipses. There are 250±16 detec-
tions of EBs.

2. Hierarchical Eclipsing Binary (HEB): The target star is
a triple or quadruple system in which one pair of stars
is eclipsing. There are 410 ±20 detections of HEBs.
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FIG. 18.— Mean numbers of planets and eclipsing binaries that are detected in the TESS simulation. Results are shown for the 2× 105 target stars that are
observed with 2 min time sampling as well as stars in the full-frame images that are observed with 30 min sampling. The statistical error from Poisson fluctuations
and the input planet occurrence rates are shown. For eclipsing binaries, additional systematic error could be as high as ≈50% (see text).

maximum number of target stars (2× 105).
Diluting flux.—Whenever the photometric aperture con-

tains flux from neighboring stars, the measured transit depth
will be smaller than it would be if the star were observed in
isolation. If this effect is not taken into account (by using ob-
servations with higher angular resolution), then the planet’s
radius will be underestimated. The source of the “diluting
flux” can be a star that is gravitationally bound to the target
star, or it can be one or more completely unrelated stars along
the same line-of-sight. In our simulation, we find that 12% of
detected planets suffer dilution by more than > 21%, making
them vulnerable to radius underestimation by> 10%. For 6%
of planets, the radii could be underestimated by > 20%. We
note that we do not consider cases of underestimated planet
sizes to be “false positives”, in contrast to Fressin et al. (2013).
Those authors considered the detection of transits with signif-
icant dilution to be a false positive because they were con-
cerned with determining the occurrence rates of planets as a
function of planet radius.
A separate scenario in which the transit depth can be diluted

is when the transiting planet is actually orbiting a background
star rather than the target star. Simulating these background
transiting planets is a more computationally challenging prob-
lem which we conducted separately from the main simula-
tions. We generated planets around the background stars rep-
resented by in “faint” star catalog and simulated the detection
of the transiting planets blended with target stars. We found
this type of transit detection to be very rare. Of the 2×105
target stars, we find that only ∼1 planet transiting a back-
ground star will be detectable with TESS. In the 30-minute
full-frame images, approximately 70 such planets might be
detected. The transit depths of these planets must be very deep
to overcome the diluting flux of the brighter target star. In the
simulations, the median radius of blended transiting planets is
17R⊕. Our conclusion is in agreement with those of Fressin
et al. (2013), who found that transits of background stars are
a less important source of detections than transits of planets

around gravitationally bound companion stars (see their Fig-
ure 10).
Single-transit detections.—In a few notable cases, the SNR

of a transit exceeds the threshold of 7.3, but only a single
transit is observed. We expect 110 such planets to be detected
with one transit. These are not counted as detections in the
tallies given above, but they are included in Figure 21 as gray
points. These planets have longer periods and lower equilib-
rium temperatures than the rest of the TESS sample. There
may even be additional single-transit detections from plan-
ets with orbital periods exceeding one year, which we have
not modeled at all. Although the periods will not be well-
constrained using TESS data alone, and the probability of a
“detection” being a statistical fluke is higher, it may still be
worthwhile to conduct follow-up observations of these stars.
The single-transit detections have a median planet size of
∼3 R⊕, a median orbital period of ∼30 days, and a median
insolation of 1.9 S⊕.

7.2. False positives
Among the 2× 105 target stars, TESS detects 1103±33

eclipsing binary systems along with the transiting planets.
The uncertainty in this figure is based only on the Pois-
son fluctuations; we acknowledge that the true uncertainty is
likely to be significantly larger. Based on our comparisonwith
the Kepler eclipsing binary catalog (see Section 4.2), the un-
certainty may be as large as 80% for relatively low galactic
latitudes.
The false-positives can be divided into the following cases:

1. Eclipsing Binary (EB): The target star is an eclipsing
binary with grazing eclipses. There are 250±16 detec-
tions of EBs.

2. Hierarchical Eclipsing Binary (HEB): The target star is
a triple or quadruple system in which one pair of stars
is eclipsing. There are 410 ±20 detections of HEBs.
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FIG. 18.— Mean numbers of planets and eclipsing binaries that are detected in the TESS simulation. Results are shown for the 2× 105 target stars that are
observed with 2 min time sampling as well as stars in the full-frame images that are observed with 30 min sampling. The statistical error from Poisson fluctuations
and the input planet occurrence rates are shown. For eclipsing binaries, additional systematic error could be as high as ≈50% (see text).

maximum number of target stars (2× 105).
Diluting flux.—Whenever the photometric aperture con-

tains flux from neighboring stars, the measured transit depth
will be smaller than it would be if the star were observed in
isolation. If this effect is not taken into account (by using ob-
servations with higher angular resolution), then the planet’s
radius will be underestimated. The source of the “diluting
flux” can be a star that is gravitationally bound to the target
star, or it can be one or more completely unrelated stars along
the same line-of-sight. In our simulation, we find that 12% of
detected planets suffer dilution by more than > 21%, making
them vulnerable to radius underestimation by> 10%. For 6%
of planets, the radii could be underestimated by > 20%. We
note that we do not consider cases of underestimated planet
sizes to be “false positives”, in contrast to Fressin et al. (2013).
Those authors considered the detection of transits with signif-
icant dilution to be a false positive because they were con-
cerned with determining the occurrence rates of planets as a
function of planet radius.
A separate scenario in which the transit depth can be diluted

is when the transiting planet is actually orbiting a background
star rather than the target star. Simulating these background
transiting planets is a more computationally challenging prob-
lem which we conducted separately from the main simula-
tions. We generated planets around the background stars rep-
resented by in “faint” star catalog and simulated the detection
of the transiting planets blended with target stars. We found
this type of transit detection to be very rare. Of the 2×105
target stars, we find that only ∼1 planet transiting a back-
ground star will be detectable with TESS. In the 30-minute
full-frame images, approximately 70 such planets might be
detected. The transit depths of these planets must be very deep
to overcome the diluting flux of the brighter target star. In the
simulations, the median radius of blended transiting planets is
17R⊕. Our conclusion is in agreement with those of Fressin
et al. (2013), who found that transits of background stars are
a less important source of detections than transits of planets

around gravitationally bound companion stars (see their Fig-
ure 10).
Single-transit detections.—In a few notable cases, the SNR

of a transit exceeds the threshold of 7.3, but only a single
transit is observed. We expect 110 such planets to be detected
with one transit. These are not counted as detections in the
tallies given above, but they are included in Figure 21 as gray
points. These planets have longer periods and lower equilib-
rium temperatures than the rest of the TESS sample. There
may even be additional single-transit detections from plan-
ets with orbital periods exceeding one year, which we have
not modeled at all. Although the periods will not be well-
constrained using TESS data alone, and the probability of a
“detection” being a statistical fluke is higher, it may still be
worthwhile to conduct follow-up observations of these stars.
The single-transit detections have a median planet size of
∼3 R⊕, a median orbital period of ∼30 days, and a median
insolation of 1.9 S⊕.

7.2. False positives
Among the 2× 105 target stars, TESS detects 1103±33

eclipsing binary systems along with the transiting planets.
The uncertainty in this figure is based only on the Pois-
son fluctuations; we acknowledge that the true uncertainty is
likely to be significantly larger. Based on our comparisonwith
the Kepler eclipsing binary catalog (see Section 4.2), the un-
certainty may be as large as 80% for relatively low galactic
latitudes.
The false-positives can be divided into the following cases:

1. Eclipsing Binary (EB): The target star is an eclipsing
binary with grazing eclipses. There are 250±16 detec-
tions of EBs.

2. Hierarchical Eclipsing Binary (HEB): The target star is
a triple or quadruple system in which one pair of stars
is eclipsing. There are 410 ±20 detections of HEBs.
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FIG. 18.— Mean numbers of planets and eclipsing binaries that are detected in the TESS simulation. Results are shown for the 2× 105 target stars that are
observed with 2 min time sampling as well as stars in the full-frame images that are observed with 30 min sampling. The statistical error from Poisson fluctuations
and the input planet occurrence rates are shown. For eclipsing binaries, additional systematic error could be as high as ≈50% (see text).

maximum number of target stars (2× 105).
Diluting flux.—Whenever the photometric aperture con-

tains flux from neighboring stars, the measured transit depth
will be smaller than it would be if the star were observed in
isolation. If this effect is not taken into account (by using ob-
servations with higher angular resolution), then the planet’s
radius will be underestimated. The source of the “diluting
flux” can be a star that is gravitationally bound to the target
star, or it can be one or more completely unrelated stars along
the same line-of-sight. In our simulation, we find that 12% of
detected planets suffer dilution by more than > 21%, making
them vulnerable to radius underestimation by> 10%. For 6%
of planets, the radii could be underestimated by > 20%. We
note that we do not consider cases of underestimated planet
sizes to be “false positives”, in contrast to Fressin et al. (2013).
Those authors considered the detection of transits with signif-
icant dilution to be a false positive because they were con-
cerned with determining the occurrence rates of planets as a
function of planet radius.
A separate scenario in which the transit depth can be diluted

is when the transiting planet is actually orbiting a background
star rather than the target star. Simulating these background
transiting planets is a more computationally challenging prob-
lem which we conducted separately from the main simula-
tions. We generated planets around the background stars rep-
resented by in “faint” star catalog and simulated the detection
of the transiting planets blended with target stars. We found
this type of transit detection to be very rare. Of the 2×105
target stars, we find that only ∼1 planet transiting a back-
ground star will be detectable with TESS. In the 30-minute
full-frame images, approximately 70 such planets might be
detected. The transit depths of these planets must be very deep
to overcome the diluting flux of the brighter target star. In the
simulations, the median radius of blended transiting planets is
17R⊕. Our conclusion is in agreement with those of Fressin
et al. (2013), who found that transits of background stars are
a less important source of detections than transits of planets

around gravitationally bound companion stars (see their Fig-
ure 10).
Single-transit detections.—In a few notable cases, the SNR

of a transit exceeds the threshold of 7.3, but only a single
transit is observed. We expect 110 such planets to be detected
with one transit. These are not counted as detections in the
tallies given above, but they are included in Figure 21 as gray
points. These planets have longer periods and lower equilib-
rium temperatures than the rest of the TESS sample. There
may even be additional single-transit detections from plan-
ets with orbital periods exceeding one year, which we have
not modeled at all. Although the periods will not be well-
constrained using TESS data alone, and the probability of a
“detection” being a statistical fluke is higher, it may still be
worthwhile to conduct follow-up observations of these stars.
The single-transit detections have a median planet size of
∼3 R⊕, a median orbital period of ∼30 days, and a median
insolation of 1.9 S⊕.

7.2. False positives
Among the 2× 105 target stars, TESS detects 1103±33

eclipsing binary systems along with the transiting planets.
The uncertainty in this figure is based only on the Pois-
son fluctuations; we acknowledge that the true uncertainty is
likely to be significantly larger. Based on our comparisonwith
the Kepler eclipsing binary catalog (see Section 4.2), the un-
certainty may be as large as 80% for relatively low galactic
latitudes.
The false-positives can be divided into the following cases:

1. Eclipsing Binary (EB): The target star is an eclipsing
binary with grazing eclipses. There are 250±16 detec-
tions of EBs.

2. Hierarchical Eclipsing Binary (HEB): The target star is
a triple or quadruple system in which one pair of stars
is eclipsing. There are 410 ±20 detections of HEBs.
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FIG. 18.— Mean numbers of planets and eclipsing binaries that are detected in the TESS simulation. Results are shown for the 2× 105 target stars that are
observed with 2 min time sampling as well as stars in the full-frame images that are observed with 30 min sampling. The statistical error from Poisson fluctuations
and the input planet occurrence rates are shown. For eclipsing binaries, additional systematic error could be as high as ≈50% (see text).

maximum number of target stars (2× 105).
Diluting flux.—Whenever the photometric aperture con-

tains flux from neighboring stars, the measured transit depth
will be smaller than it would be if the star were observed in
isolation. If this effect is not taken into account (by using ob-
servations with higher angular resolution), then the planet’s
radius will be underestimated. The source of the “diluting
flux” can be a star that is gravitationally bound to the target
star, or it can be one or more completely unrelated stars along
the same line-of-sight. In our simulation, we find that 12% of
detected planets suffer dilution by more than > 21%, making
them vulnerable to radius underestimation by> 10%. For 6%
of planets, the radii could be underestimated by > 20%. We
note that we do not consider cases of underestimated planet
sizes to be “false positives”, in contrast to Fressin et al. (2013).
Those authors considered the detection of transits with signif-
icant dilution to be a false positive because they were con-
cerned with determining the occurrence rates of planets as a
function of planet radius.
A separate scenario in which the transit depth can be diluted

is when the transiting planet is actually orbiting a background
star rather than the target star. Simulating these background
transiting planets is a more computationally challenging prob-
lem which we conducted separately from the main simula-
tions. We generated planets around the background stars rep-
resented by in “faint” star catalog and simulated the detection
of the transiting planets blended with target stars. We found
this type of transit detection to be very rare. Of the 2×105
target stars, we find that only ∼1 planet transiting a back-
ground star will be detectable with TESS. In the 30-minute
full-frame images, approximately 70 such planets might be
detected. The transit depths of these planets must be very deep
to overcome the diluting flux of the brighter target star. In the
simulations, the median radius of blended transiting planets is
17R⊕. Our conclusion is in agreement with those of Fressin
et al. (2013), who found that transits of background stars are
a less important source of detections than transits of planets

around gravitationally bound companion stars (see their Fig-
ure 10).
Single-transit detections.—In a few notable cases, the SNR

of a transit exceeds the threshold of 7.3, but only a single
transit is observed. We expect 110 such planets to be detected
with one transit. These are not counted as detections in the
tallies given above, but they are included in Figure 21 as gray
points. These planets have longer periods and lower equilib-
rium temperatures than the rest of the TESS sample. There
may even be additional single-transit detections from plan-
ets with orbital periods exceeding one year, which we have
not modeled at all. Although the periods will not be well-
constrained using TESS data alone, and the probability of a
“detection” being a statistical fluke is higher, it may still be
worthwhile to conduct follow-up observations of these stars.
The single-transit detections have a median planet size of
∼3 R⊕, a median orbital period of ∼30 days, and a median
insolation of 1.9 S⊕.

7.2. False positives
Among the 2× 105 target stars, TESS detects 1103±33

eclipsing binary systems along with the transiting planets.
The uncertainty in this figure is based only on the Pois-
son fluctuations; we acknowledge that the true uncertainty is
likely to be significantly larger. Based on our comparisonwith
the Kepler eclipsing binary catalog (see Section 4.2), the un-
certainty may be as large as 80% for relatively low galactic
latitudes.
The false-positives can be divided into the following cases:

1. Eclipsing Binary (EB): The target star is an eclipsing
binary with grazing eclipses. There are 250±16 detec-
tions of EBs.

2. Hierarchical Eclipsing Binary (HEB): The target star is
a triple or quadruple system in which one pair of stars
is eclipsing. There are 410 ±20 detections of HEBs.
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