Luminosities of young directly-detectable gas giants

Gabriel-Dominique Marleau

Ch. Mordasini, A. Cumming, H. Klahr
M. Bonnefoy, Th. Henning
Overview

1. Uncertain theory + Unique observations = Great opportunity

2. Inferring M and S_i from L and age

3. Population synthesis results

4. Bonus: Speculation

5. Summary and outlook
Overview

1. Uncertain theory + Unique observations = Great opportunity
2. Inferring M and S_i from L and age
3. Population synthesis results
4. Bonus: Speculation
5. Summary and outlook
Gas giant formation scenarios

- Core accretion $\rightarrow M_p \lesssim 30 M_J$, closer-in, higher $[\text{Fe/H}]$
- Gravitational instability \rightarrow heavier, $\gtrsim 10$–30 au
Gas giant formation scenarios

- Core accretion $\rightarrow M_p \lesssim 30 \, M_J$, closer-in, higher [Fe/H], colder (?)
- Gravitational instability \rightarrow heavier, $\gtrsim 10$–30 au, hotter (?)
- Big uncertainty: post-formation thermal state (luminosity, entropy)
Gas giant formation scenarios

- Core accretion $\rightarrow M_p \lesssim 30 \, M_J$, closer-in, higher [Fe/H], colder (?)
- Gravitational instability \rightarrow heavier, $\gtrsim 10$–30 au, hotter (?)
- Big uncertainty: post-formation thermal state (luminosity, entropy)
- Extremes: hot and cold starts; reality: continuum (?)

![Diagram](image)
Gas giant formation scenarios

- Core accretion $\rightarrow M_p \lesssim 30\ M_J$, closer-in, higher [Fe/H], colder (?)
- Gravitational instability \rightarrow heavier, $\gtrsim 10$–30 au, hotter (?)
- Big uncertainty: post-formation thermal state (luminosity, entropy)
- Extremes: hot and cold starts; reality: continuum (?)

Given composition: $L = L(M, S)$
Direct imaging

- Probe far/closer in, CA–Gl boundary, interaction with disc, ...
- In particular: infant planets → remember birth process
 ! Caveat: Conversion from brightness to mass not trivial

![Diagram showing mass vs. semi-major axis for different detection methods and observational techniques.](image-url)
Direct imaging

- Probe far/closer in, CA–GI boundary, interaction with disc, ...
- In particular: infant planets → remember birth process
 - Caveat: Conversion from brightness to mass not trivial

![Diagram](image-url)

Luminosities of young directly-detectable gas giants
Direct imaging

- Probe far/closer in, CA–GI boundary, interaction with disc, ...
- In particular: infant planets \rightarrow remember birth process
 ! Caveat: Conversion from brightness to mass not trivial
Direct imaging

- Probe far/closer in, CA–GI boundary, interaction with disc, ...
- In particular: infant planets \(\rightarrow\) remember birth process
- ! Caveat: Conversion from brightness to mass not trivial

Masses from direct observations

- Hot starts provide lower mass bound

 (e.g. Fortney et al. 2008; Marleau & Cumming 2014)

 \(\rightarrow\) Statistics (mass function) possibly skewed
Direct imaging

- Probe far/closer in, CA–GI boundary, interaction with disc, ...
- In particular: infant planets → remember birth process
 ! Caveat: Conversion from brightness to mass not trivial

Masses from direct observations

- Hot starts provide lower mass bound
 (e.g. Fortney et al. 2008; Marleau & Cumming 2014)
 → Statistics (mass function) possibly skewed
 ⭐ Turn this around → constraints on initial entropy

Luminosities of young directly-detectable gas giants
Overview

1. Uncertain theory + Unique observations = Great opportunity

2. Inferring M and S_i from L and age

3. Population synthesis results

4. Bonus: Speculation

5. Summary and outlook
Standard cooling tracks for gas giant planets

! Low entropy \rightarrow long cooling time t_{cool}

- $t < t_{\text{cool}}: \approx$ remember initial entropy
- $t > t_{\text{cool}}: \approx$ power law

(Burrows & Liebert 1993; Arras & Bildsten 2006)
Standard cooling tracks for gas giant planets

! Low entropy \rightarrow long cooling time t_{cool}

- $t < t_{\text{cool}}$: \approx remember initial entropy
- $t > t_{\text{cool}}$: \approx power law

(Burrows & Liebert 1993; Arras & Bildsten 2006)
Standard cooling tracks for gas giant planets

- Low entropy → long cooling time t_{cool}
- $t < t_{\text{cool}}$: \approx remember initial entropy
- $t > t_{\text{cool}}$: \approx power law

(Burrows & Liebert 1993; Arras & Bildsten 2006)
Standard cooling tracks for gas giant planets

- Low entropy \rightarrow long cooling time t_{cool}

- $t < t_{\text{cool}}$: \approx remember initial entropy
- $t > t_{\text{cool}}$: \approx power law

(Burrows & Liebert 1993; Arras & Bildsten 2006)

Analytical approximation

\Rightarrow Cooling curve with arbitrary L_{init}:

$$\frac{1}{L(t)} = \frac{1}{L_{\text{init}}} + \frac{1}{L_{\text{hot start}}(t)}$$

Standard cooling tracks for gas giant planets

- Low entropy \rightarrow long cooling time t_{cool}

- $t < t_{\text{cool}}$: \approx remember initial entropy
- $t > t_{\text{cool}}$: \approx power law

(Burrows & Liebert 1993; Arras & Bildsten 2006)

Analytical approximation

\Rightarrow Cooling curve with arbitrary L_{init}:

$$\frac{1}{L(t)} = \frac{1}{L_{\text{init}}} + \frac{1}{L_{\text{hot start}}(t)}$$
Standard cooling tracks for gas giant planets

- Low entropy \rightarrow long cooling time t_{cool}

- $t < t_{\text{cool}}$: \approx remember initial entropy

- $t > t_{\text{cool}}$: \approx power law

 (Burrows & Liebert 1993; Arras & Bildsten 2006)

Analytical approximation

\Rightarrow Cooling curve with arbitrary L_{init}:

$$\frac{1}{L(t)} = \frac{1}{L_{\text{init}}} + \frac{1}{L_{\text{hot start}}(t)}$$

\rightarrow Map $(t, L)_{\text{obs}}$ point to $M_p(L_{\text{init}})$ curve (Marleau & Cumming 2014)

- General principle—valid for all sets of cooling curves

 (vary atmospheric grids, semi-convection, etc.)
β Pictoris b

- MCMC for 21 ± 4 Myr and $\log L = -3.90 \pm 0.07$
- Use RV constraints (here, small effect)
Uncertain theory + Unique observations = Great opportunity
Inferring M and S_i from L and age
Population synthesis results
Bonus: Speculation
Summary

β Pictoris b

- MCMC for 21 ± 4 Myr and $\log L = -3.90 \pm 0.07$
- Use RV constraints (here, small effect)
• MCMC for 21 ± 4 Myr and $\log L = -3.90 \pm 0.07$
• Use RV constraints (here, small effect)
Uncertain theory + Unique observations = Great opportunity Inferring \(M \) and \(S_i \) from \(L \) and age Population synthesis results Bonus: Speculation Summary and outlook

\[\beta \text{ Pictoris } b \]

- MCMC for 21 \(\pm \) 4 Myr and \(\log L = -3.90 \pm 0.07 \)
- Use RV constraints (here, small effect)
β Pictoris b

- MCMC for 21 ± 4 Myr and $\log L = -3.90 \pm 0.07$
- Use RV constraints (here, small effect)
- Core mass $\geq 65\, M_\oplus$ if cold start
- ★ Robust against age uncertainty

Bonnefoy, Marleau et al. (2014)

Luminosities of young directly-detectable gas giants

4 / 7

Gabriel-Dominique Marleau (MPIA)
Uncertain theory + Unique observations = Great opportunity

Infering M and S_i from L and age

Population synthesis results

Bonus: Speculation

Summary and outlook

β Pictoris b

- MCMC for 21 ± 4 Myr and $\log L = -3.90 \pm 0.07$
- Use RV constraints (here, small effect), more dynamical modelling useful
- Core mass $\geq 65 \, M_\oplus$ if cold start
 - Robust against age uncertainty
Overview

1. Uncertain theory + Unique observations = Great opportunity

2. Inferring M and S_i from L and age

3. Population synthesis results

4. Bonus: Speculation

5. Summary and outlook

Luminosities of young directly-detectable gas giants
Uncertain theory + Unique observations = Great opportunity
Inferring M and S_i from L and age

Population synthesis results

Bonus: Speculation

Summary and outlook

Mordasini et al., in prep.

Big L spread (~ 1.5 dex)

D-burning
$L_D \geq 5\% L_{\text{int}}$
$L_D \geq 25\% L_{\text{int}}$
$L_D \geq 50\% L_{\text{int}}$

\bullet Big L spread (~ 1.5 dex)

$!$ All have same opacity...
Uncertain theory + Unique observations = Great opportunity
Inferring \(M \) and \(S_i \) from \(L \) and age
Population synthesis results
Bonus: Speculation
Summary and outlook

Mordasini et al., in prep.

\(\log \left(\frac{L}{L_{\odot}} \right) \)

\(T = 3 \times 10^6 \) yrs

D-burning

- \(L_D \geq 5\% \ L_{\text{int}} \)
- \(L_D \geq 25\% \ L_{\text{int}} \)
- \(L_D \geq 50\% \ L_{\text{int}} \)

- Big \(L \) spread
 \((\sim 1.5 \) dex\)

- ! All have same opacity…

Luminosities of young directly-detectable gas giants
Uncertain theory + Unique observations = Great opportunity
Inferring M and S_i from L and age
Population synthesis results
Bonus: Speculation

Summary and outlook

Mordasini et al., in prep.

Big L spread (~ 1.5 dex)

D-burning

$L_D \geq 5\% \ L_{\text{int}}$

$L_D \geq 25\% \ L_{\text{int}}$

$L_D \geq 50\% \ L_{\text{int}}$

- Big L spread (~ 1.5 dex)
- All have same opacity...
Uncertain theory + Unique observations = Great opportunity

Inferring M and S_i from L and age

Population synthesis results Bonus: Speculation Summary and outlook

Mordasini et al., in prep.

Big L spread (~ 1.5 dex)

All have same opacity...

HD 100546 b: interpretation?

(Quanz et al. 2015)
Uncertain theory + Unique observations = Great opportunity
Inferring M and S_i from L and age
Population synthesis results
Bonus: Speculation
Summary and outlook

Mordasini et al., in prep.

Big L spread (~ 1.5 dex)

All have same opacity...

HD 100546 b: interpretation?
(Quanz et al. 2015)

Luminosities of young directly-detectable gas giants

D-burning

$L_D \geq 5\% \ L_{\text{int}}$

$L_D \geq 25\% \ L_{\text{int}}$

$L_D \geq 50\% \ L_{\text{int}}$

$T=1\times10^7$ yrs
Overview

1. Uncertain theory + Unique observations = Great opportunity

2. Inferring M and S_i from L and age

3. Population synthesis results

4. Bonus: Speculation

5. Summary and outlook

Luminosities of young directly-detectable gas giants

Gabriel-Dominique Marleau (MPIA)
A feature of the $L-t$ diagram?

Hot-start mass $\lesssim 25 \ M_J$

(Neuhäuser & Schmidt 2012, updated)

Cooling curves for 1–25 M_J

(Marleau & Cumming 2014)
A feature of the L–t diagram?

Hot-start mass $\leq 25 \, M_J$

(Neuhäuser & Schmidt 2012, updated)

Cooling curves for 1–25 M_J

- **Gap** in data around $10^{-4} \, L_\odot$?

(Marleau & Cumming 2014)
A feature of the L–t diagram?

Hot-start mass $\leq 25 \, M_J$

(Neuhäuser & Schmidt 2012, updated)

Cooling curves for 1–25 M_J

- Gap in data around $10^{-4} \, L_\odot$?
- Lower density in cooling curves...
- ... if uniform mass function over deuterium-burning limit

(Marleau & Cumming 2014)
A feature of the $L-t$ diagram?

Hot-start mass $\leq 25 \, M_J$
(Neuhäuser & Schmidt 2012, updated)

Cooling curves for 1–25 M_J
- Gap in data around $10^{-4} \, L_\odot$?
- Lower density in cooling curves...
- ... if uniform mass function over deuterium-burning limit
- Speculative
 - See what surveys say!

(Marleau & Cumming 2014)
Overview

1. Uncertain theory + Unique observations = Great opportunity
2. Inferring M and S_i from L and age
3. Population synthesis results
4. Bonus: Speculation
5. Summary and outlook
Summary and outlook

Key point

Direct detections \rightarrow information on L_{init}
\Rightarrow Constrain formation models statistically
Summary and outlook

Key point

Direct detections \rightarrow information on L_{init}
\Rightarrow Constrain formation models statistically

- Application to β Pic b: $S_i > 10.5$ (non-cold start)
- Population synthesis: tool for statistical comparison to theory
- Exciting future as close-in planets start being directly detected (SPHERE, GPI, CHARIS, etc.)
Summary and outlook

Thank you for your attention!

Key point

Direct detections \rightarrow information on L_{init}
\Rightarrow Constrain formation models statistically

- Application to β Pic b: $S_i > 10.5$ (non-cold start)
- Population synthesis: tool for statistical comparison to theory
- Exciting future as close-in planets start being directly detected (SPHERE, GPI, CHARIS, etc.)