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Reevaluation of the possibility and impact of layered convection:  
application to the radius anomaly of hot Jupiters



Inflated hot Jupiters

• Hot Jupiters have anomalously large radii 
• It is crucial to understand the mechanism of the radius anomaly to constrain 

compositions and origins of exoplanets
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3.5. Mass-radius relation
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Figure 8. Theoretical and observed mass-radius relations. The black line is applicable to the evolution of solar composition planets, brown dwarfs
and stars, when isolated or nearly isolated (as Jupiter, Saturn, Uranus and Neptune, defined by diamonds and their respective symbols), after 5 Ga
of evolution. The dotted line shows the effect of a 15M⊕ core on the mass-radius relation. Orange and yellow curves represent the mass-radius
relations for heavily irradiated planets with equilibrium temperatures of 1000 and 2000K, respectively, and assuming that 0.5% of the incoming
stellar luminosity is dissipated at the center (see section 4.3). For each irradiation level, two cases are considered: a solar-composition planet with
no core (top curve), and one with a 100M⊕ central core (bottom curve). Circles with error bars correspond to known planets, brown dwarfs and
low-mass stars, color-coded as a function of their equilibrium temperature(below 750, 1500, 2250K and above 2250K, respectively, from darkest
to lightest).

The relation between mass and radius has very fundamental astrophysical applications. Most importantly it al-
lows one to infer the gross composition of an object from a measurement of its mass and radius. This is especially
relevant in the context of the discovery of extrasolar planets with both radial velocimetry and the transit method, as
the two techniques yield relatively accurate determination of M and R, these determinations being often limited by
the uncertainty on the stellar parameters themselves.

Figure 8 shows mass-radius relations for compact degenerate objects from giant planets to brown dwarfs and low-
mass stars. The right-hand side of the diagram shows a rapid increase of the radius with mass in the stellar regime
which is directly due to the onset of stable thermonuclear reactions. In this regime, observations and theoreticalmodels
agree (see however Ribas, 2006, for a more detailed discussion). The left-hand side of the diagram is obviously more
complex, and this can be understood by the fact that planets have much larger variations in composition than stars,
and because external factors such as the amount of irradiation they receive do affect their contraction in a significant
manner.

Let us first concentrate on isolated or nearly-isolated gaseous planets. The black curves have a local maximumnear
4MJ: at small masses, the compression is small so that the radius increases with mass. At large masses, degeneracy
sets in and the radius decreases with mass.
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Theoretical and observed mass-radius relations (Guillot & Gautier, 2014)
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Fig. 1.—Evolution of the radius and the intrinsic luminosity of a Jupiter-
mass ( ) planet orbiting at 0.05 AU of a Sun-like star, from the same initial1 MJ
conditions. All calculations include the effect of the stellar irradiation on the
planet structure and evolution. (1) Effect of a core and metal enrichment.
Dotted line: Adiabatic interior, no core, . Long-dashed line: AdiabaticZ p Z,

interior, central dunite core , metal enrichment in theM p 6 M Z ! 6 Zc ! env ,

envelope. (2) Effect of layered convection (same and ). Solid line:M Zc env
Layered convection for layers. Dot-dashed line (upper panel):N p 100

layers. The observed values of the seven planets with abnormallyN p 50
large radii, HD 209458b (triangle), WASP-1b, XO-1b, OGLE-TR-56b, Tres-
2, HAT-P-1b, and HD 189733b, with masses ranging from 0.5 to 1.3 , areMJ
displayed with their most recent 1 j error bar determinations. [See the elec-
tronic edition of the Journal for a color version of this figure.]

Fig. 2.—Internal heavy element and thermal profiles at 5 Gyr for the case
of 100 convective ! diffusive layers distributed in the inner 30% by mass of
the planet. The global heavy element mass fraction of the planet is Z p

, including the central core ( ). Note the steplikeM /M p 0.13 M p 2% MZ p core p

T and Z distributions, as portrayed in the inner subsets. [See the electronic
edition of the Journal for a color version of this figure.]

explained observed radii of HD 209458b and similar irradiated
planets suggests that diffusive convection might be taking place
in the interior of at least certain giant planets. As seen, the
expected luminosity at young ages is more than 1 order of
magnitude fainter than that of a fully convective planet evolving
from a comparable initial state. The observational confirmation
of the present scenario would be either the determination of
an exoplanet temperature or luminosity at young ages3 or the
observation of an inflated radius for a transiting planet at large
enough orbital distance, AU for a solar-type parenta ! 0.1
star, for stellar irradiation not to affect the planet’s internal
structure. Figure 1 also illustrates the dependence of the evo-
lution on the number of layers. Less boundary layers imply
larger convective layers and thus more efficient heat transport,
as illustrated by the more rapidly decreasing radius in the 50-
layer calculations.
A key question is to know whether diffusive interfaces can

persist on timescales comparable to the characteristic time for
the evolution of the planet. According to the aforementioned
critical Richardson number criterion, supported by experiments
(Fernando 1989), a quantitative argument is that if the average
kinetic energy in the convective layers is smaller than (a frac-
tion of) the potential energy wall of the interface, convection
cannot penetrate deeply into this interface, and significant en-
trainment across the interface cannot occur. This implies that

3 For short-period, irradiated planets, however, the intrinsic flux of the planet,
, is smaller than the absorbed and reflected contributions of the incident4jTeff

stellar flux, ∼ . For long-period planets or for planed telescopes like2(R /a) F⋆ ⋆

the LBT or the JWST, dedicated to infrared planet searches, however, the
planet intrinsic luminosity can be determined.

the molecular diffusion timescale is long enough. This latter
can be estimated for the entire stack of layers, distributed over
a region of size L in the planet (presently cm). The9L ∼ 10
flux of elements across an interface is , whereF ≈ rD (dZ/d )Z X

is the jump in the element mass fraction at eachdZ ≈ (l/L) DZ
interface while is the total variation over the entire semi-DZ
convective region. The timescale to redistribute the entire gra-
dient over the entire region is then t ≈ (rLDZ/F ) ≈Z

Gyr. This admittedly crude estimate shows2(L /D) (d /l) ≈ 10X

that the stable diffusive convection configuration might last
long enough to affect substantially the evolution. With the typ-
ical value cm2 s"1, about 10% of the initial gradient"3D p 10

has been transported by diffusion over a Gyr, as confirmedDZ
by our numerical calculations. In principle, the compositional
gradient thus remains large enough during the evolution for
the Ledoux criterion to remain valid in a majority of layers.
In other words, the temperature jump at interfaces is too small
to offset the molecular weight stabilization of interfaces
[ ]. The composition and temperature profiles(DT/T ) " (Dm/m)
in our calculations at 5 Gyr are portrayed in Figure 2, with

and K at each diffusive interface. Note3dZ/DZ ≈ 1% DT ≈ 10
that, if layers form in sequence through turbulent entrainment
or from sporadically breaking internal waves generated by os-
cillatory instabilities, interfaces may be dynamically renewed
with time, if some compositional gradient or stirring effects
remain present. Such a process occurs in laboratory systems
and oceans.
Different reasons can be advocated for the cause of the initial

compositional gradient. This latter can be inherited from the
formation process. Large incoming planetesimals could dis-
seminate part of their constituents, iron, silicates, ices, by ab-
lation and break-up as they penetrate the building gaseous en-
velope (Iaroslavitz & Podolak 2007). Note also that accretion
will not proceed homogeneously as capture mechanisms differ
for the gas (H, He), ice (essentially C, O, N), and rock (silicates
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Layered convection
Evolution of luminosity and radius of hot Jupiter (Chabrier & Baraffe, 2007)

• Layered convection leads to much less heat transport and inflated radii (CB2007) 
• Solar-system gas giants may also have layered-convective interiors (Leconte & Chabrier, 2012; 2013)
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Fig. 2. Schematic representation of the interiors of Jupiter and Saturn, according to the present study, and of layered convection, with the resulting
compositional and thermal radial profiles. The abundance of metals is constant within the well mixed convective cells of size l, and undergoes a
steep variation within the diffusive interfaces of thermal size δT (gray regions). Thanks to this steep gradient, these interfaces are stable against
convection and energy and matter are transported therein by diffusive processes. Because the size of these layers is very small compared with the
size of the planet, the mean thermal and compositional gradients (⟨∇T ⟩ and ⟨∇µ⟩) can be used in good approximation to infer the planet’s overall
structure.

In a laboratory or a numerical experiment, the efficiency of
the convection is characterized by the thermal Nusselt number,

NuT ≡
Ftot − Fad

d

Fd − Fad
d

, (7)

where by definition the total intrinsic flux (Ftot), the flux trans-
ported by diffusive processes (Fd), and the diffusive flux that
would be present in a completely adiabatic zone (Fad

d ) are given
by (Cox & Giuli 1968; Hansen & Kawaler 1994)
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ftot
Fd
Fad

d

⎞
⎟⎟⎟⎟⎟⎟⎟⎠ ≡ κT

ρ cPT
HP

⎛
⎜⎜⎜⎜⎜⎜⎝
∇d
∇T
∇ad

⎞
⎟⎟⎟⎟⎟⎟⎠ , (8)

where cP is the heat capacity at constant pressure. It is found
that, for high Rayleigh numbers, the Nusselt number follows a
law of the type

NuT = CL Raa
⋆, (9)

where Ra⋆ is a modified Rayleigh number3, which is the ratio
of the strength of the thermal forcing to the one of the radiative
losses

Ra⋆ ≡
αT gH3

P

κ2T
α4 (∇T − ∇ad) =

(
N2

T l4/κ2T

)
. (10)

Here, g is the local gravity acceleration, and NT the
Brunt-Väisälä frequency.

As convection at very high Rayleigh numbers is difficult
to study either experimentally or computationally, it is diffi-
cult to give precise values for a and CL. For the bounded
Rayleigh-Bénard problem, theoretical models suggest that the
exponent of the convective flux law, a, could be equal to one
third (Garaud et al. 2010)4. However, experiments done by

3 Indeed, in the astrophysical context, it is convenient to use Ra⋆ =
Pr × Ra, where Ra is the usual Rayleigh number.
4 Although the simulations presented by Rosenblum et al. (2011) seem
to support exponent values lower than 1/3, suggesting that interfaces act
as impermeable boundaries, it should be noticed that the height of the
layers present in their simulations is small compared to a pressure scale
height. Their conclusion may thus not be valid for thicker layers.

Krishnamurti (1995) tend to show that this exponent could be
lower, and as low as a = 0.2. On the other hand, for ho-
mogeneous Rayleigh-Bénard convection (without boundaries),
Garaud et al. (2010) show that the regime predicted by the mix-
ing length theory, i.e. NuT = Ra1/2

⋆ (CL = 1, a = 1/2; see
Appendix A), is recovered. In the following, we thus consider
0.2 ! a ! 0.5 and CL = 1.

Equation (9) is sufficient to calculate the flux transported
by convection once the super adiabaticity is known. To com-
pute this, however, we must first define a quantity that can be
computed a priori from the local thermodynamical properties of
the medium and the total internal energy flux to be transported.
Following Hansen & Kawaler (1994), this convective forcing can
be defined by

Φ ≡ NuT × Ra⋆. (11)

Introducing εd ≡ ∇d − ∇ad, we rewrite Eq. (11) as Φ ≡ Φ0 α4 εd
where

Φ0 ≡
⎛
⎜⎜⎜⎜⎝
αTgH3

P

κ2T

⎞
⎟⎟⎟⎟⎠ · (12)

It is clear from Eq. (11) thatΦ0 is a local constant of the medium,
which characterizes its ability to transport energy by convection,
independently of the mixing length or of the flux to be trans-
ported (∝εd).

Then, from Eqs. (9) and (11), one sees that in a region where
convection remains efficient enough,

Φ = NuT × Ra⋆ = CL Ra1+a
⋆ ⇒ Ra⋆ =

(
Φ

CL

)1/(1+a)

, (13)

which yields the super adiabaticity,

εT ≡ ∇T − ∇ad =

(
εd

NuT

)
=

(
εd

CLΦ
a
0 α

4 a

)1/(1+a)

. (14)

The range of super adiabaticity in the convective layers implied
by this equation for the various possible exponents a is shown
in Fig. 3 (pale red area). As seen, the uncertainty on a leads to a
large dispersion on this super adiabaticity. In this high convective

A20, page 4 of 13

Leconte & Chabrier (2012)

Evaluating the possibility of the layered convection is necessary  
to understand both exoplanets and solar-system gas giants
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Condition to form layered convection
Layered convection forms in limited parameter range

The Astrophysical Journal, 731:66 (14pp), 2011 April 10 Rosenblum et al.
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Figure 4. Evolution of the thermal Nusselt number for seven of the simulations
presented in Table 1. In all cases, Pr = τ = 0.3, RaT = 108 (Lz = 100),
and the aspect ratio is one. NuT − 1 is shown to emphasize the exponential
growth phase. The results are also staggered for clarity, so each curve actually
shows f (NuT − 1) where the multiplicative factor f is 1, 10, 100, 1000, 104,
105, and 106, respectively, for R−1

0 = 1.85, 1.6, 1.5, 1.35, 1.2, 1.15, and 1.1.
A straight horizontal line of the same color in each case marks the point at
which NuT − 1 = 1 for reference (i.e., when turbulent and diffusive fluxes are
equal to one another). Note how runs with R−1

0 ! 1.35 remain in a quasi-steady
saturated state, while runs with R−1

0 < 1.35 show a subsequent increase in
transport. The R−1

0 = 1.35 run was actually integrated until t = 2500, but was
found to remain at the same saturated level.

so we define the thermal Nusselt number as

NuT = −κT T0z + ⟨wT ⟩
−κT T0z

= 1 + ⟨w̃T̃ ⟩, (17)

where the angular brackets denote a spatial average over the
entire domain. We also define the equivalent compositional
Nusselt number Nuµ as

Nuµ = −κµµ0z + ⟨wµ⟩
−κµµ0z

= 1 +
R0

τ
⟨w̃µ̃⟩. (18)

In each case, in the second expression the turbulent fluxes are
expressed in a non-dimensional form recalling that T0z < 0 and
µ0z < 0, while T and µ are non-dimensionalized using |T0z|.

In all simulations presented in Figure 4, the thermal Nusselt
number increases exponentially until saturation and remains

approximately constant during the early saturated phase. After
saturation, however, simulations which were run using a lower
R−1

0 behave in a fundamentally different way from those at
higher R−1

0 . In the latter case, for R−1
0 ! 1.35, the Nusselt

number at saturation remains statistically steady for the entire
duration of the run. By contrast, for R−1

0 < 1.35, the Nusselt
number later continues to increase.

When visualizing the results, we find that this second increase
in the turbulent transport properties of the system corresponds to
the formation of well-mixed fully convective layers separated by
thin stably stratified interfaces (see Figure 5 for example). The
Nusselt number continues to increase as the layers merge, until a
single layer is left. We have therefore established that layers can
indeed form in low Prandtl number double-diffusive convection,
and that, as in the high Prandtl number regime, a layered system
transports heat more efficiently than a homogeneous system
with the same overall temperature and compositional gradient.
We now study both the homogeneous phase and the layered
phase in more detail in Sections 4 and 5, respectively.

4. HOMOGENEOUS DOUBLE-DIFFUSIVE CONVECTION

We focus here on the homogeneous phase, prior to the
formation of the first set of layers, and measure the transport
properties of the turbulence via the respective Nusselt numbers
defined in Equations (17) and (18). Note that the time period
between the initial saturation of the double-diffusive instability
and the onset of layer formation, when it occurs, varies with
R−1

0 (see Figure 4). Table 1 indicates, for each simulation, the
time interval over which the system is in this homogeneously
turbulent phase and during which we average the instantaneous
Nusselt numbers.

The mean Nusselt numbers thus extracted are presented in
Table 1 and illustrated in Figure 6(a). The errors quoted denote
the rms of the fluctuations around the respective means. For
most values of R−1

0 , we ran a series of simulations with different
resolution, or different box size, or both. The measured Nusselt
numbers are always consistent within the error bars.

As expected, turbulent mixing is negligible close to marginal
stability, i.e., when R−1

0 → (Pr + 1)/(Pr + τ ). It increases as
R−1

0 decreases through the instability range, and grows rapidly
close to the onset of overturning convection (i.e., as R−1

0 → 1).
However, we find that it remains fairly weak, with NuT of
the order of a few and Nuµ of the order of 10, even for

Figure 5. Volume-rendered visualization of the mean molecular weight perturbation, for R−1
0 = 1.2, using the tall-domain simulation (Lz = 178d). Shown are five

snapshots taken at different times, (a) in the homogeneous phase at t = 400, (b) in the four-layer phase at t = 1100, (c) three-layer phase at t = 1350, (d) two-layer
phase at t = 1550, and (e) single-layer phase at t = 1850. The color scale is adjusted in each panel to emphasize the perturbations, so that µ̃ ∈ [−0.1, 0.1]µ0zLz in
(a), µ̃ ∈ [−0.25, 0.25]µ0zLz in (b) and (c), µ̃ ∈ [−0.4, 0.4]µ0zLz in (d), and µ̃ ∈ [−0.5, 0.5]µ0zLz in (e).
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Time

Formation of layered convection 
in numerical experiment 
(Rosenblum et al., 2011)

We reevaluate the possibility and impact of the layered convection 
based on self-consistent treatment of convection regimes

– 7 –

2.2. Convection regimes

The energy is transported by radiation, conduction, and convection. The convection

regime is determined by the classification based on the reciprocal of the density ratio,

R−1
ρ ≡ αµ∇µ

αT (∇T −∇ad)
, (5)

where αT ≡ −(∂ ln ρ/∂ ln T )P,µ, αµ ≡ (∂ ln ρ/∂ ln µ)P,T , ∇ad ≡ (∂ ln T/∂ ln P )S,µ,

∇µ ≡ d ln µ/d ln P , and µ is the mean molecular-weight (Rosenblum et al. 2011;

Mirouh et al. 2012; Wood et al. 2013; Leconte & Chabrier 2012). When R−1
ρ < 0 or

(Pr+1)/(Pr+ τ) < R−1
ρ , the energy is transported by radiation transfer or heat conduction,

where Pr ≡ ν/κT is the Prandtl number, τ ≡ D/κT is the ratio of the compositional to

heat diffusivities, and κT is the heat diffusivity. Under the assumption of the diffusion

approximation for radiation transfer, both radiative and conductive temperature gradients

are given by, ∇T = ∇d:

∇d =
3

16πacG

κLP

MrT 4
, (6)

where a is the radiation constant, c is the speed of light in vacuum, and κ is the radiative

or conductive opacity.

When 1 < R−1
ρ < (Pr + 1)/(Pr + τ), the diffusive instability leads to layered convection

or turbulent diffusion (Rosenblum et al. 2011; Mirouh et al. 2012; Wood et al. 2013).

Whereas recent numerical simulations showed that the layers form only in a limited

parameter range within 1 < R−1
ρ < (Pr + 1)/(Pr + τ) (Mirouh et al. 2012), we decided

to assume the layered convection for 1 < R−1
ρ < (Pr + 1)/(Pr + τ). As will be shown in

Section 3, this simplification does not affect our conclusions. We use a coarse graining

model developed by Leconte & Chabrier (2012) for the layered convection, in which ∇T is

given by the mean temperature gradient in the layered-convective zone composed of fine

Density ratio:
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on top
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1
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4
√

2H
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p
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• 1D thermal evolution calculation 
　(Henyey method, modified from Kurokawa & Kaltenegger, 2013; Kurokawa & Nakamoto, 2014) 
• Parameterized convection models of overturning and layered convection 
• Evolution of compositional profile is not considered for simplicity

Model– 7 –

2.2. Convection regimes

The energy is transported by radiation, conduction, and convection. The convection

regime is determined by the classification based on the reciprocal of the density ratio,

R−1
ρ ≡ αµ∇µ

αT (∇T −∇ad)
, (5)

where αT ≡ −(∂ ln ρ/∂ ln T )P,µ, αµ ≡ (∂ ln ρ/∂ ln µ)P,T , ∇ad ≡ (∂ ln T/∂ ln P )S,µ,

∇µ ≡ d ln µ/d ln P , and µ is the mean molecular-weight (Rosenblum et al. 2011;

Mirouh et al. 2012; Wood et al. 2013; Leconte & Chabrier 2012). When R−1
ρ < 0 or

(Pr+1)/(Pr+ τ) < R−1
ρ , the energy is transported by radiation transfer or heat conduction,

where Pr ≡ ν/κT is the Prandtl number, τ ≡ D/κT is the ratio of the compositional to

heat diffusivities, and κT is the heat diffusivity. Under the assumption of the diffusion

approximation for radiation transfer, both radiative and conductive temperature gradients

are given by, ∇T = ∇d:

∇d =
3

16πacG

κLP

MrT 4
, (6)

where a is the radiation constant, c is the speed of light in vacuum, and κ is the radiative

or conductive opacity.

When 1 < R−1
ρ < (Pr + 1)/(Pr + τ), the diffusive instability leads to layered convection

or turbulent diffusion (Rosenblum et al. 2011; Mirouh et al. 2012; Wood et al. 2013).

Whereas recent numerical simulations showed that the layers form only in a limited

parameter range within 1 < R−1
ρ < (Pr + 1)/(Pr + τ) (Mirouh et al. 2012), we decided

to assume the layered convection for 1 < R−1
ρ < (Pr + 1)/(Pr + τ). As will be shown in

Section 3, this simplification does not affect our conclusions. We use a coarse graining

model developed by Leconte & Chabrier (2012) for the layered convection, in which ∇T is

given by the mean temperature gradient in the layered-convective zone composed of fine

Density ratio:

hot on top

cold on tophigh µ  
on top

low µ  
on top

∫
T

dS

dt
dMr = 4πR2

pσT 4
int (16)

∫ Mp

Mcore

T
dS

dt
dMr = 4πR2

pσT 4
int − Lradio − Cp

dTcore

dt
(17)

RXUV = Rp + ∆R (18)

RXUV = Rp + HR ln
PRR2

XUV

NHmHGMp
(19)

dMp

dt
=

ηπFXUVR3
XUV

GMpKtide
(20)

LXUV = Lsaturate
XUV (21)

LXUV = Lsaturate
XUV

( t

tsaturate

)−1.23 (22)

dτ = −ρκdr (23)

dT

dr
= − 3κρ

16σSBT 3

Lp

4πr2
(24)

tlifetime =
Menvelope
dMenvelope

dt

(25)

dMenvelope

dt
= ηπFXUV

R3
planet

GMplanet
(26)

dMenvelope

dt
= ηπFXUV

R3
XUV

GMplanetKtide
(27)

Fconv =
CpρTg

1
2 l2m

4
√

2H
3
2
p

(∇T −∇T,e)
1
2 (αT∇T − αµ∇µ − αT∇T,e) (28)

R−1
ρ =

Pr + 1
Pr + τ

(29)

2

∫
T

dS

dt
dMr = 4πR2

pσT 4
int (16)

∫ Mp

Mcore

T
dS

dt
dMr = 4πR2

pσT 4
int − Lradio − Cp

dTcore

dt
(17)

RXUV = Rp + ∆R (18)

RXUV = Rp + HR ln
PRR2

XUV

NHmHGMp
(19)

dMp

dt
=

ηπFXUVR3
XUV

GMpKtide
(20)

LXUV = Lsaturate
XUV (21)

LXUV = Lsaturate
XUV

( t

tsaturate

)−1.23 (22)

dτ = −ρκdr (23)

dT

dr
= − 3κρ

16σSBT 3

Lp

4πr2
(24)

tlifetime =
Menvelope
dMenvelope

dt

(25)

dMenvelope

dt
= ηπFXUV

R3
planet

GMplanet
(26)

dMenvelope

dt
= ηπFXUV

R3
XUV

GMplanetKtide
(27)

Fconv =
CpρTg

1
2 l2m

4
√

2H
3
2
p

(∇T −∇T,e)
1
2 (αT∇T − αµ∇µ − αT∇T,e) (28)

R−1
ρ =

Pr + 1
Pr + τ

(29)

R−1
ρ = 1 (30)

2

Layered

Overturning

Stable

Coarse graining model 
(Leconte & Chabrier, 2012) 
l/HP = 10-7 is adapted

Mixing length theory 
with compositional gradient 
(similar with Stevenson & Salpeter, 
1977; Umezu & Nakakita, 1988)



Settings
Following CB2007, 
• Mplanet = 1 MJupiter 
• Teq = 1250K (~0.045 AU from the Sun) 
• monotonic gradient model: CB2007-like, but monotonic profile  
   metal-rich model: the same mass of heavy-elements, but homogeneous profile 
   metal-poor model: solar composition, homogeneous 
• start from a high-entropy state expected from formation theory (Marley et al., 2007)
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• The impact of compositional inhomogeneity is limited in the case where 
the self-consistent treatment of convection regimes is adapted 

• The effect of increased heavy-elements compensates that of compositional 
inhomogeneity on the radius

Evolution of radius

Kurokawa & Inutsuka (2015) in prep.



• Convection regime is overturning convection for the first 1 Gyr 
　→ Efficient mixing of compositional inhomogeneity? 
• Layered convection forms after 1 Gyr passed, when the planet has already cooled

Evolution of convection regime
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The planet cools down more efficiently because of the overturning convection, 
which leads to the smaller radius

Temperature profile at 5 Gyr

Kurokawa & Inutsuka (2015) in prep.



Discussion
• Relation to Chabrier & Baraffe (2007) 
CB2007 assumed the presence of the layered convection. 
We showed that layered convection does not spontaneously form from the monotonic 
compositional profile for the first 1 Gyr in the evolution stage. 
The development in planet formation stage and the long-term stability is still unknown. 
!
• Later-formed layered convection 
Compositional inhomogeneity created in the formation stage may be smoothed out by the 
overturning convection in the early stage. 
In this case, compositional inhomogeneity that emerges in the late phase may contributes to 
form the layered convection (e.g., core erosion, phase separation). 
The later-formed layered convection may account for luminosity problems of our solar-
system giant planets (Leconte & Chabrier, 2013), but it is hard to account for the inflated 
radii of hot Jupiters. 
!
• Evolution of compositional profile 
Vazan et al. (2015) found the formation of stair-like compositional profiles caused by the 
compositional transport of the overturning convection. 
Compositional transport of the overturning convection may possibly create a sharp, 
stabilizing compositional gradient before it is smoothed out. 
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Summary
• Layered convection induced by compositional 

inhomogeneity has been proposed to account for the 
infrared radii of hot Jupiters. 
!

• We developed an evolutional model with a self-
consistent treatment of convection regimes and 
applied the model to the hot Jupiters that have the 
monotonic compositional gradients. 
!

• The layered convection was absent for the first 1 
Gyr. As a result, the impact of compositional 
inhomogeneity on the radius was limited at least 
in the case of the monotonic compositional 
gradient. 

!
• Core erosion or phase separation may contribute the 

late formation of the compositional gradient and the 
layered convection,  but it seems to be difficult to 
account for the inflated radii of hot Jupiters. 

!
• Further study is needed to understand the 

consequence of the compositional transport due 
to the overturning convection.


