Using Strong Gravitational Lensing to Study Dwarf Galaxies at Figh Redshifts(1<z<3)

(UV Luminosity Function)

Anahita Alavi University of California Riverside Alavi et al 2016 (submitted to ApJ), arXiv160600469A

Brian Siana, Johan Richard, Marc Rafelski, Mathilde Jauzac, Marceau Limousin, William Freeman, Claudia Scarlata, Brant Robertson, Daniel Stark, Harry Teplitz, Alberto Dominguez, Vandana Desai

VFRS

∧ST

Motivation : Peak Epoch of Star Formation Rate Density (1<z<3)

Madau et al, 1996

Motivation : Where Is the Other half of Ultraviolet Light During the Peak Epoch?

UV Frontier: Legacy Near-UV Imaging of the Frontier Fields (Siana, et al. in prep)

Hubble Frontier Fields • HST • ACS • WFC3

λ (μm)

• UV Frontier Fields: 8 orbits in F275W and F336W

UV Abell 1689

• Abell 1689: 10,30, 18 orbits imaging in F225W, F275W and F336W.

Sample Selection

Lensing Models

Magnification distribution

- HFF lens models from The Cluster As Telescopes (CATS) team.
- MACSJ0717: Limousin et al., 2016
- Abell 2744: Jauzac et al., 2015

• ABELL 1689: Limousin et al., 2007

Completeness Simulation Very important but no time!

• In order to connect the observed galaxies to the underlying population of all star-forming galaxies, we need to precisely estimate the completeness of our sample. $C(m, z, \mu)$

- Size distribution
- The effect of lensing magnification and shear

UV Luminosity Function

z=2 LBG in Abell 1689, Alavi et al., 2014

- Maximum Likelihood fitting to individual galaxies
- Modify the MLE technique to account for different sources of uncertainties (photometry, photometric redshifts, lens models)

V Luminosity Function

Alavi et al., 2016 (submitted to ApJ)

Table 3					
Best-fit Schechter Parameters for	UV	\mathbf{LFs}			

Z	α	M*	$\phi^*(10^{-3}{ m Mpc}^{-3}{ m mag}^{-1})$		
Photometric redshift LF, MLE fitting					
$egin{aligned} 1.0 < z < 1.6^{\mathrm{a}} \ 1.6 < z < 2.2^{\mathrm{a}} \ 2.2 < z < 3.0^{\mathrm{b}} \end{aligned}$	$-1.56 {\pm} 0.04 \\ -1.72 {\pm} 0.04 \\ -1.94 {\pm} 0.06$	-19.74 ± 0.18 -20.41 ± 0.20 -20.71 ± 0.11 (prior)	$2.32{\pm}0.49 \ 1.50{\pm}0.37 \ 0.55{\pm}0.14$		

V Luminosity Function

Alavi et al., 2016 (submitted to ApJ)

Table 3						
Best-fit	Schechter	Parameters	for	UV	LFs	

Z	α	M*	$\phi^*(10^{-3}{ m Mpc}^{-3}{ m mag}^{-1})$	
Photometric redshift LF, MLE fitting				
$1.0 < z < 1.6^{a} \\ 1.6 < z < 2.2^{a}$	$-1.56{\pm}0.04$ $-1.72{\pm}0.04$	$-19.74{\pm}0.18$ $-20.41{\pm}0.20$	$2.32{\pm}0.49\ 1.50{\pm}0.37$	
$2.2 < z < 3.0^{ m b}$	$-1.94{\pm}0.06$	$-20.71{\pm}0.11(\mathrm{prior})$	$0.55{\pm}0.14$	

UV Luminosity Density

Alavi et al., 2016 (submitted to ApJ)

The faint dwarf galaxies , $-18.5 < M_{1500} < -12.5$, comprise the majority of the unobscured UV luminosity density (58%, 55%, and 59% of the total UV luminosity density at z ~ 1.3, z ~ 1.9, and z ~ 2.6, respectively)

UV Spectral Slope and Dust Attenuation of Dwarf (ongoing work)

Measuring the UV Spectral Slope(Preliminary)

Bursty Star Formation History

Bursty SFHs in Low Mass Simulated Galaxies Changes UV Continuum Slope

Anahita Alavi-IAP 2016

Future Work: Near-IR Spectroscopy with MOSFIRE

Data:

- MOSFIRE spectra on A1689, MACS J0717, MACS J1149
- In total, 132 galaxies with spectroscopic data (7 nights)
- K, H, J and Y band

Goals:

- Dust attenuation using Balmer decrement (H α /H β)
- Metallicity
- UV/Hα ratio, as an indicator of bursty SFH

SUMMARY

- Thanks to the lensing magnification, we can extend the UV LF measurements down to very faint luminosities of $M_{UV} = -12.5$ at 1 < z < 3., with $\alpha = -1.56 \pm 0.04$, $\alpha = -1.72 \pm 0.04$ and $\alpha = -1.94 \pm 0.06$ for 1.0 < z < 1.6, 1.6 < z < 2.2 and 2.2 < z < 3.0, respectively.
- Our steep UV LFs show no sign of turnover down to MUV = -12.5.
- The faint galaxies (-18<M $_{\rm uv}$ <-12.5) contribute the majority (50%-60%) of the total unobscured UV luminosity density during the peak epoch of cosmic star formation
- Future work: what causes the large intrinsic scatter in the UV slope at low luminosities?

votre attention

Alavi et al., 2014, Alavi et al., 2015