

MARTIN BOURNE

DEBORA SIJACKI, MIKE CURTIS, SERGEI NAYAKSHIN, ALEX HOBBS & KASTYTIS ZUBOVAS **SHAPING GALAXIES WITH BLACK HOLE FEEDBACK**

CONSTRAINING FEEDBACK MODELS

LARGE SCALE OUTFLOWS

- Range of states and velocities
 - Ionised ~ 3000 km/s
 - Neutral atomic ~ 1000 km/s
 - Cold molecular ~ 1000 km/s

 $M_{\rm out} \sim 100 - 1000 {\rm M}_{\odot} {\rm yr}^{-1}$ $E_{\rm out} \sim 0.05 L_{\rm AGN}$

e.g. Feruglio et al., 2010, Sturm et al., 2011, Rupke & Veilleux, 2011, 2013 a,b, Cicone et al., 2012, 2014, 2015, Faucher-Giguére et al., 2012, Maiolino et al., 2012, Arav et al., 2013, Liu et al., 2013, Harrison et al., 2014, Carniani et al., 2015, Tombesi et al., 2015

CONSTRAINING FEEDBACK MODELS

LARGE SCALE OUTFLOWS

- Range of states and velocities
 - Ionised ~ 3000 km/s
 - Neutral atomic ~ 1000 km/s
 - Cold molecular ~ 1000 km/s

$$\dot{M}_{\text{out}} \sim 100 - 1000 \text{ M}_{\odot} \text{ yr}^{-1}$$
$$\dot{E}_{\text{out}} \sim 0.05 L_{\text{AGN}}$$
$$\dot{p}_{\text{out}} \sim 20 \frac{L_{\text{AGN}}}{C}$$

e.g. Feruglio et al., 2010, Sturm et al., 2011, Rupke & Veilleux, 2011, 2013 a,b, Cicone et al., 2012, 2014, 2015, Faucher-Giguére et al., 2012, Maiolino et al., 2012, Arav et al., 2013, Liu et al., 2013, Harrison et al., 2014, Carniani et al., 2015, Tombesi et al., 2015

FAST NUCLEAR WINDS – MOMENTUM VS ENERGY DRIVING

$$v_{
m wind} \sim 0.1c$$

 $\dot{p}_{
m wind} \simeq rac{L_{
m AGN}}{c}$
 $\dot{E}_{
m wind} \sim 0.05 L_{
m AGN}$
(e.g. King 2010, King & Pounds

2015)

- X-rays UFOs
 - Pounds et al., 2003a,b
 - Pounds & Reeves, 2009
 - Tombesi et al., 2010a,b, 2015
 - King & Pounds, 2015 (Review)

FAST NUCLEAR WINDS – MOMENTUM VS ENERGY DRIVING

INVERSE COMPTON COMPONENT

- Efficient e-p coupling -1T shock
- Input spectrum modeled by obs Type 1 AGN, 1-100 eV
- If R_{shock} > R_{torus} still
 expect to observe
 spectra at low
 energies in Type 2
 AGN

OBSERVATIONAL SIGNATURES – 1T SHOCK

HOW RESILIENT ARE GALAXIES? – SET UP

- Use Gadget-3 (Springel 05) to perform SPHS (Read et al. 10 & 12) simulations to study effects of a shocked UFO on ambient medium
- Hot bubble of gas used to model hot shocked wind
- Apply turbulent velocity field to ambient gas & evolve to form ``clumpy'' medium
- Energy escapes through paths of least resistance
- High density material not kicked out but can be compressed and ablated

(Bourne, Nayakshin & Hobbs, 2014)

HOW RESILIENT ARE GALAXIES? – FLOW PROPERTIES

- Mass and energy flows de-couple
- Ram pressure of the outflow acts upon high density clumps (see also, McKee & Cowie 1975, Wagner et al. 2012, 2013, Nayakshin et al. 2014)

Dirac

JET MODE FEEDBACK

- Many galaxy clusters contain giant X-ray cavities associated with radio Jets.
- Jets and the cavities they inflate play an important role in regulating the cooling of the ICM and hence the evolution of the host galaxy.
- How jet energy is efficiently communicated to the ICM is not well understood (see e.g., McNamara & Nulsen 2007; Fabian 2012 for reviews).

Previous simulations, e.g.: Churazov et al. 2001, 2002 Omma et al. 2004,

 Vernaleo & Reynolds 2006, Cattaneo & Teyssier 2007, Dubois et al. 2010, 2012 Yang & Reynolds 2016

SIMULATION OF JET FEEDBACK – THE METHOD

- Use AREPO (Springel 2010) to simulate jet feedback from SMBHs
- Refinement technique of Curtis & Sijacki 15
- Inject mass, momentum, thermal and/or kinetic energy into cylinder centered on black hole

SIMULATION OF JET FEEDBACK – EARLY RESULTS

- Example density and temperature slices for jet simulation
- Inject mass, momentum and kinetic energy
- Jet injected on scales of order 100 pc
- Maintain high resolution within the jet but lower resolution in ICM
- Temperatures reach ~10¹⁰ K & Density contrasts reach ~10⁴

(Bourne, Curtis & Sijacki, in prep)

SIMULATION OF JET FEEDBACK – GAS FLOWS

prep)

initial full

axis plane

3.0

initial

full

axis plane

3.0

2.5

1.0

0.5

0.5

1.5

1.5

radius log(kpc)

1.0

2.0

2.5

radius log(kpc)

2.0

SIMULATION OF JET FEEDBACK – THERMAL VS KINETIC

SIMULATION OF JET FEEDBACK - PRECESSING JET

prep)

SUMMARY

- Black hole scaling relations suggest that the coupling between AGN feedback and the ISM must be weak momentum drives M– σ ?
- IC cooling should produce feature in the X-rays this has so far not been observed – hint at a lack of IC cooling – due to weak electron-proton coupling? (see Faucher-Giguere & Quataert 2012)
 - Modelling the multiphase structure if the ISM in simulations makes it more resilient to AGN feedback, possibly negating the need for IC cooling
- Have implemented jet feedback method into AREPO in combination with refinement scheme that allows the jet to be injected on small scales
- Similar to previous simulations (e.g. Yang & Reynolds, 2015), kinetic jet feedback produces the negative temperate gradient observed in cool-core clusters (e.g. Hudson+ 2010)
- No evidence for jet driven turbulence in the ICM, consistent with findings of Hitomi observations of the Perseus cluster.