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THE NEED FOR BETTER STATISTICAL TECHNIQUES

Tinsley (1968) Heavens et al (2004)

Some parameters are robustly constrained - most methods should give 
similar results, when using the same assumptions. 

However we do not necessarily know how well we do. 
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Morphology:

Visual classification Computer morphology Deep learning/SVMs/
Neural networks

Photo-zs:

Baum (1962) Koo (1985)
Template fits (Loh & Spillar 1986)
Linear regression (Connolly et al 1995)

Neural networks (Collister & Lahav 2004)

Random forests, Gaussian process 
regression, Support Vector 
Machines, +++

SED fitting:
Trager et al (2000)

Koleva et al (2008)

da Cunha et al (2008)

Min 𝜒2

Grid-based Bayesian

MCMC Bayesian
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THE NEED FOR BETTER STATISTICAL APPROACHES 

How can we fully exploit large datasets?

How well do we know what we know?
An estimate is insufficient - we need reliable confidence/credible intervals

Needs:
Rigorous analysis exploring parameter space properly.
A deep understanding of our photon (typically) gathering process.

Lots of data ≢ easily lots of (good) science
Needs:

Fast algorithms, low (or calibratable) bias

But: We need the right ingredients!
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THE IMPORTANCE OF THE RIGHT INGREDIENTS
Advanced statistical tools are great - but:

Any chain (of reasoning) is only as good as its weakest link

The good news:  

     Lot of excellent work in the last 10-15 years: Massive progress

BUT: This remains a key uncertainty in much of our work: 

    Binaries, stellar rotation, α-enhancement, IMF, far UV spectra, 
turbulence, …
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Moving to a better basis set for the continuum fit (in this case MILES 
spectra), made much more of a difference than changes in the algorithm 
used for fitting.
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CHECKING THE INGREDIENTS
Classical: Milky Way globulars - e.g. Maraston et al (2003); Barber et al (2014)

Next step?: IFU spectroscopy of stellar systems & HST CMDs 

Kamann et al (2016) - A Stellar Census in NGC 6397 with MUSE  

Preliminary results (MSc thesis Pietrow): SED modelling consistent with CMD
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Pipe3D

The move from index-index plots has led to a proliferation of methods 
to fit the full spectrum of galaxies: 

BEAGLE
+++++

These have used a range of methods: Principal Component Analysis, Non-
negative least squares, non-negative matrix factorisation, bounded value least-
squares, MCMC + 𝜒2, constrained minimisation with generalised CV etc. 

LePhare, GalMC, CIGALE, MagPhys, BayeSED, FAST, HyperZ, GP-CV, Annz, Stable-GP, EAZY, BPZ, ++++++

But beyond these optimisation methods the main progression has been from 
minimum 𝜒2 to more rigorous Bayesian approaches.
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THE APPEAL OF BAYESIAN APPROACHES
Posterior =

Likelihood⇥ Prior

Model evidence

✓ Need to explicitly state (many) assumptions 

✓ Complex posterior distributions can be handled 

✓ Efficient MCMC methods exist to sample high-dimensional problems 

✓ Potentially flexible framework to handle systematic uncertainties (SFHs?)

- Can be time-consuming 

- Can be appear misleadingly “rigorous”

Acquaviva et al (2011) - GalMC
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THE LIKELIHOOD
Standard approach:

so

but this supposes that we know the variance - if it is estimated from the 
data or uncertain, this is not correct and you need a Student t-distribution:
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A real concern:
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INDEX-INDEX & DIAGNOSTIC DIAGRAMS
Trager et al (2000) Veilleux & Osterbrock (1987)

Are these now a waste of time? 

Certainly not - they provide physical insight, usually much more than a 
triangle plot of posterior samples from an MCMC chain. 



EMISSION LINES
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INFERRING IONISED GAS PROPERTIES
Pagel et al (1979)

While the theoretical models have 
advanced, many studies today use 
analysis techniques similar to this.
12 + logO/H = 7.056 + 0.767R23 + 0.602R2

23 �O32

�
0.29 + 0.332R23 � 0.331R2

23

�

log[N ii]/[O ii] =1106.8660� 532.1545112 + logO/H+

96.3732612 + logO/H2 � 7.810612312 + logO/H3 + 0.2392824712 + logO/H4

12 + logO/H = 8.73� 0.32O3N2

12 + logO/H =
R23 + 726.1 + 842.2P + 337.5P 2

85.96 + 82.76P + 43.98P 2 + 1.793R23
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INFERRING IONISED GAS PROPERTIES
THESE METHODS CONTAIN IMPLICIT PRIORS But they still work well - sometimes

Analogous to Bell & de Jong (2001) M/L as a function of colour method.

Problems: 

✓ Uncertainty analysis based on fitting formulae is questionable. 
➡ Full model grids should be used.

✓ Unspecified prior assumptions might be invalid in some 
conditions, but so hidden as to be overlooked. 
➡  Make your assumptions explicit - for instance using a Bayesian 

analysis framework. 

E.g.: pyqz (Dopita et al 2013), IZI (Blanc et al (2015), HII-CHI-mistry (Perez-Montero 
2014), MPA-JHU code (Brinchmann et al 2004; Tremonti et al 2004).
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EXAMPLE: IZI  -  SINGLE HII REGION
Blanc et al (2015)

Note in particular the double-peaked nature of the PDFs & the correlation 
between ionisation parameter (q) and metallicity (12 + log O/H). 
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Best(?): Use the full PDF

Alternative: summary statistics
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HANDLING OF PDFS
PDFs for e.g. O/H are often bimodal/complex 
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Gas surface density PDFs (Brinchmann et al 2013)
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SO IS A BAYESIAN ANALYSIS THE WAY FORWARD?

It might be - but priors might 
have to be carefully chosen 
to get useful results.

8.0 8.5 9.0 9.5
12 + Log O/H

0.0<z<0.35

0.35<z<0.37

0.37<z<0.79

0.79<z<0.85

0.85<z<1.4

[O II], Hβ, [O III],
 Hα, [N II], [S II]

[O II], Hβ, [O III], Hα

[O II], Hβ, [O III]

[O II], Hβ

[O II]

Optical spectrograph: [3700Å, 9000Å]

True when comparing 
different redshifts, but also 
when comparing within a 
galaxy
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in a rigorous way.
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METALLICITY GRADIENTS DETERMINATION
One approach (e.g. KMOS-3D, Wuyts et al 2016): 

  - strong lines close in wavelength 

  - beam smearing correction from models 

Works well - but hard to quantify uncertainties 
in a rigorous way.

Wuyts et al (2016)

With MUSE:  

   - a range of lines, weaker in the outskirts 

   - different sets of lines at different redshifts 

   - wavelength dependent PSF
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METALLICITY GRADIENTS DETERMINATION
IFU data: need to exploit spatial correlations

Z(r)

PHOTOIONISATION 
MODELS

MCMC

Metallicity gradient, central metallicity

PSF DATA

David Carton
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METALLICITY GRADIENTS DETERMINATION
IFU data: need to exploit spatial correlations

MCMC
(MultiNest)

Figure from David Carton



Carton et al (2016, submitted)



Not always this nice!

Carton et al (2016, submitted)



When galaxies are well-behaved it works

Carton et al (submitted)



When they are not - it is a problem

Clumpy structure means comparison of low & high-z 
metallicity profiles can be problematic.

Carton et al (submitted)
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APPLICATION: MUSE DEEP FIELDS

3’x3’ mosaic in the UDF
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Carton et al (2016, in prep)
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SUMMARY

▸ The basic ingredients are increasingly well known - time for the 
statistical methodology to take advantage of this. 

▸ Bayesian modelling, particularly of emission lines, should 
become the norm for the field over the coming years. 

▸ With the steady increase in resolved spectroscopy, flexible 
ways of integrating spatial coherence would be useful 
extensions to SED/emission line models. 

▸ A full forward modelling of metallicity profiles allows 
uncertainties to be well characterised but also shows that low-z 
and high-z metallicity gradients should be compared with care



ADDITIONAL 
MATERIAL
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FITTING EMISSION LINES - A LOT TO LEARN

+[O II]

τ
V

Log Z/Z
sun

Log U  ξ Log η
Ηα Log Σ

gas

0 1 2 3 -1.0 -0.5 0.0 0.5 -3.5 -3.0 -2.5 0.2 0.3 0.4 6.0 6.5 7.0 7.5 0.5 1.5 2.5

lnP (M|{Li}) = �1

2

X

i2{Li}

(fi �AfM)2

�2
i

+ lnPr,

Fit models (Charlot & Longhetti 2001, also Dopita et al (2013) for 
metallicities):

PriorfM=model
likelihood
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UDF Mosaic : 3’x3’ - >10hr per pointing



UDF Mosaic : 3’x3’ - >10hr per pointing

Deepest part



MUSE

THE ENEMY: SEEING

Way forwards: Forward modelling



When galaxies are well-behaved it works

Carton et al (submitted)



When they are not - it is a problem

Clumpy structure means comparison of low & high-z 
metallicity profiles can be problematic.

Carton et al (submitted)
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METALLICITY PROFILES

Carton et al (in prep)


