FIRST LIGHT: Hydrodynamical Simulations of Primeval Galaxies

DANIEL CEVERINO (Institut für Theoretische Astrophysik, Heidelberg, Germany)

Ralf Klessen, Simon Glover, Eric Pellegrini

Image credit: Sindi Short

Cosmic Reionisation

Planck 2016

Robertson et al. 2010

WHAT ARE THE PROPERTIES OF THE PRIMEVAL GALAXIES?

WHAT IS THEIR EFFECT ON THE EARLY UNIVERSE (REIONISATION)?

Cosmic Reionisation

Planck 2016

Robertson et al. 2010

Late and fast reionisation at z=7.8-8.8 ($\tau \sim 0.058$)

Universe was ionised at less than the 10 % level at redshifts above $z \approx 10$. Which sources drive reionisation?

Which sources drive reionisation?

- Pop III & mini-haloes (M_H<10^{8.25} M_☉) do not contribute much to reionisation (M_{UV}>-13)
- Massive haloes (M_H>10¹² M_☉) are too rare at z~8
- Intermediate regime?

Wise et al. 2014

Simulations

- Simulations of galaxy formation during reionisation
- Large volumes and high resolution are needed

Simulations

- Simulations of galaxy formation during reionisation
- Large volumes and high resolution are needed
- The FirstLight Project

The FirstLight Project

- Order of 1000 zoom cosmological simulations of the formation of first galaxies from z=12 to z=5 in 10-80 Mpc/h boxes
- spatial resolution of 10 pc (M_{DM} =10⁴ M_{sun})
- largest database of zoom simulations with this resolution
- AMR code: ART (Kravtsov et al 1997, Kravtsov 2003)
- Gas Cooling, Star Formation, Stellar Feedback (thermal) (Ceverino & Klypin 2009; Ceverino, Dekel and Bournaud 2010)
- Radiative Feedback (Ceverino et al. 2014)

UV Luminosity Function of Primeval Galaxies

Preliminary results

Stellar Mass- UV luminosity

 Stellar masses in agreement with extrapolations from Stark relations, assuming evolution of the Hα line

SMHM ratio

 Haloes hosting the galaxies that reionise the Universe have M_H≥10⁹ M_☉ or V_{max}>30 km/s at z=8

Behroozi & Silk (2015)

Gas Distributions at z=5

Low-mass (M_H=2 10⁹ M_{\odot}, M_s=3 10⁶ M_{\odot})

High-mass (M_H=3 $10^{10} M_{\odot}$, M_s= $10^{8} M_{\odot}$)

Low f_{esc}, a few free channels

High f_{esc}, many low-density chimneys

Stellar Spectrum

- composite stellar spectra (black) of FL05: >300 SSP
- Two basic components
- "young" population (age~100 Myr) that dominates the non-ionising region
- "extremely young" population (age~1 Myr) dominates the ionising flux

Transmitted spectrum

Also emission lines

Investigating the effect of binaries (BPASS)

 Higher ionising flux if we include the effects of binaries

Summary

- The FirstLight project aims to study the formation of the first galaxies that drive reionisation. Stay tuned: 1000 simulations are running...
- First results are in agreement with observed or extrapolated UV luminosity functions
- Relations between halo mass, stellar mass, SFR are consistent with current data
- Complex and multiphase gas around galaxies
- Multiple stellar populations contribute to the stellar spectrum of the galaxy