

Modeling and interpreting the SEDs of galaxies with BEAGLE in the era of NIRSpec-JWST

Jacopo Chevallard

Postdoctoral Research Fellow @ ESA-ESTEC

http://www.jacopochevallard.org/beagle/ arXiv 1603.03037

Collaborators

- S. Charlot • J. Gutkin (PhD)
- A. Vidal (PhD)
- A. Feltre

- E. Curtis-Lake • M. Hirschmann • A. Wofford
 - D. Stenning

• P. Ferruit • G. Giardino

• P. Coelho

• M. Franx

• J. Blaizot • L. Michel-Dansac

• C. Pacifici

J. Chevallard - Modeling and interpreting the SEDs of galaxies with BEAGLE in the era of NIRSpec-JWST

"Cosmic dawn of galaxy formation" - IAP - 21st June 2016

Outline

JWST, early galaxies and cosmic reionization
 BEAGLE: a new analysis framework for galaxy SEDs
 Broad-band SED fitting with BEAGLE
 Simulating JWST/NIRSpec observations

Observational constraints on high-z galaxies

 Large samples of high-z galaxy candidates assembled by means of deep photometric surveys (e.g. Oesch+14, Bouwens+15, Atek+15, Finkelstein+15, McLeod+15, Livermore+16)

Observational constraints on high-z galaxies

 Large samples of high-z galaxy candidates assembled by means of deep photometric surveys (e.g. Oesch+14, Bouwens+15, Atek+15, Finkelstein+15, McLeod+15, Livermore+16)

• Spectroscopic

characterisation of these galaxies still limited (e.g. Pentericci+11, Roberts-Borsani +15, Stark+15;16, Zitrin+15, Oesch+16), because of **challenges** of ground-based NIR spectroscopy

Cosmic reionization and high-z galaxies

- Faint end of high-z UV LF: lowmass SF galaxies can provide enough H-ionizing photons (e.g. Robertson+15, Atek+15, Bouwens+15)
- This depends on several **assumptions**:
 - minimum UV magnitude of high-z galaxies,
 - and their ionizing emissivity;
 - escape fraction of ionizing photons into ISM;
 - temperature, density and ioniz. fields of IGM ("clumping factor").

Large samples of UV-to-optical spectra of high-z galaxies required to understand **cosmic reionization**, but also early **chemical evolution** of galaxies, role of **feedback** processes (AGN, SNe), ...

Large samples of UV-to-optical spectra of high-z galaxies required to understand **cosmic reionization**, but also early **chemical evolution** of galaxies, role of **feedback** processes (AGN, SNe), ...

- ▶ 6.5 m primary mirror
- ▶ 7x HST collecting area
- imaging + spectroscopy in
 0.6-28 micron range

Large samples of UV-to-optical spectra of high-z galaxies required to understand **cosmic reionization**, but also early **chemical evolution** of galaxies, role of **feedback** processes (AGN, SNe), ...

- ▶ 6.5 m primary mirror
- ▶ 7x HST collecting area
- imaging + spectroscopy in
 0.6-28 micron range

★ wide range of spectroscopic capabilities

- *** low** to **medium** resolution
- *** MOS, IFU** and **single-slit**

Large samples of UV-to-optical spectra of high-z galaxies required to understand **cosmic reionization**, but also early **chemical evolution** of galaxies, role of **feedback** processes (AGN, SNe), ...

JWST: **"game changer**" for spectroscopic characterization of distant galaxies

* wide range of spectroscopic capabilities
* low to medium resolution
* MOS, IFU and single-slit

Modelling (high-z) galaxies SEDs

- JWST (and ELTs) will provide us with **unique data**
- Need **models** able to cope with these data
- (But our **general approach** can be applied to any spectrophotometric data-set)
- This requires improving SED modelling approaches:
 - include predictions from galaxy formation models
 - treat in a consistent way different galaxy components (i.e. star, dust, gas, AGN)
 - use of **statistical techniques** able to deal with complex multi-parameters models

The BEAGLE tool

BayEsian Analysis of GaLaxy sEds

The BEAGLE tool

BayEsian Analysis of GaLaxy sEds

The BEAGLE tool

BayEsian Analysis of GaLaxy sEds

Fitting UVUDF photometry

 Used BEAGLE to fit (up to) 12 HST photometric bands in the UDF ("UVUDF" catalogue, Rafelski+2015)

- Physical model adopted:
 - stellar + nebular emission from Gutkin+2016
 - exp. delayed SFH + 10 Myr burst
 - two-components dust attenuation (Chevallard+2013)
 - ▶ IGM absorption from Inoue+2014 (similar to Madau+1995)
 - total of 7 free parameters
- Statistical approach (Nested Sampling) can deal with parameter **degeneracies** and **multi-modal solutions**

Fitting UVUDF photometry

Photo-z estimates statistically consistent

- BEAGLE provides **posterior PDF** of model parameters
- Allows study of **correlations** between redshift and galaxy physical parameters
- Adopted Bayesian algorithm (MultiNest) provides identification of multiple modes in the posterior PDF

- BEAGLE provides **posterior PDF** of model parameters
- Allows study of **correlations** between redshift and galaxy physical parameters
- Adopted Bayesian algorithm (MultiNest) provides identification of multiple modes in the posterior PDF
- Can compare integrated probability in each mode, and perform a "Bayesian model comparison"

- BEAGLE provides **posterior PDF** of model parameters
- Allows study of **correlations** between redshift and galaxy physical parameters
- Adopted Bayesian algorithm (MultiNest) provides identification of multiple modes in the posterior PDF
- Can compare integrated probability in each mode, and perform a "Bayesian model comparison"

Photo-*z* vs photo-*z*

 Regions of "outliers" occupied by galaxies exhibiting multiple redshift solutions of comparable probability (see also Ilbert+06, Brammer+08)

 ~50 % of outliers in BEAGLE vs BPZ and BEAGLE vs EAZY comparisons can be explained by these multiple solutions

Photo-*z* vs photo-*z*

 Regions of "outliers" occupied by galaxies exhibiting multiple redshift solutions of comparable probability (see also Ilbert+06, Brammer+08)

 ~50 % of outliers in BEAGLE vs BPZ and BEAGLE vs EAZY comparisons can be explained by these multiple solutions

BEAGLE and JWST/NIRSpec

- NIRSpec will provide us with unprecedented data
- Need to search for **best strategy** to study high-*z* galaxies w. NIRSpec
 - Which features in galaxies SED can better constrain different physical parameters, at different redshifts?
 - Which mode, or combination of modes, is best? E.g. low resolution vs high resolution, S/N thresholds?
 - Which instrumental effects can hamper our measurements?

Simulations workflow

Input catalogue (XDF, Bouwens+15)

Simulations workflow

Comparison of input vs retrieved physical parameters

Input catalogue: Hubble XDF

•eXtreme Deep Field (**XDF**) (Illingworth+2013; Bouwens+2015)

•4.7 arcmin² in HUDF with ultra-deep near-IR observations

- •HST **F160W** (5σ) = **29.8** AB
- •IRAC **3.6** and **4.5 μm** (5σ) = **26.5** AB
- Fit (~700) Bouwens+15 *B* to *Y*band dropouts with same **model** adopted for UVUDF (stellar + nebular emission, 2-component SFH, IGM, dust, photo-*z*)

SED fitting of XDF sources: B-dropout

B-dropout, ID #4011875904, F160W=28.74 AB

SED fitting of XDF sources: *B*-dropout

B-dropout, ID #4011875904, F160W=28.74 AB

Fitting of NIRSpec simulations: Y-dropout

- Select maximum-a-posteriori
 SED among ~10³ SEDs provided by BEAGLE for each XDF source
- Simulate "deep" NIRSpec observation (PRISM, 10⁵ s)
- Split galaxies in two subsamples: star forming (sSFR > -9.5) and passive (sSFR < -9.5)
- Study **retrieval** of parameters as a function of dropout band and F160W magnitude

Fitting of NIRSpec simulations: Y-dropout

- Select maximum-a-posteriori
 SED among ~10³ SEDs provided by BEAGLE for each XDF source
- Simulate "deep" NIRSpec observation (PRISM, 10⁵ s)
- Split galaxies in two subsamples: star forming (sSFR > -9.5) and passive (sSFR < -9.5)
- Study **retrieval** of parameters as a function of dropout band and F160W magnitude

Retrieval as a function of dropout redshift

star forming

- Ionization parameter and (interstellar) metallicity constrained within 0.1 dex for SF, while specific SFR within 0.2 dex
- **SFH** and **stellar mass** better retrieved in passive galaxies
- Metallicity better retrieved in SF, for which almost no dependence on redshift

Retrieval as a function of dropout redshift

---- passive

- Ionization parameter and (interstellar) metallicity constrained within 0.1 dex for SF, while specific SFR within 0.2 dex
- **SFH** and **stellar mass** better retrieved in passive galaxies
- Metallicity better retrieved in SF, for which almost no dependence on redshift

Retrieval as a function of dropout redshift

star forming
passive

- Ionization parameter and (interstellar) metallicity constrained within 0.1 dex for SF, while specific SFR within 0.2 dex
- **SFH** and **stellar mass** better retrieved in passive galaxies
- Metallicity better retrieved in SF, for which almost no dependence on redshift

Retrieval as a function of F160W mag

star forming

- Strong dependence of dispersion of retrieved parameters with F160W mag
- For SF galaxies, ionization parameter, specific SFR and stellar mass from 0.05 dex to ~0.2 dex
- For passive ones, metallicity and dust from 0.05 dex to ~0.2 dex, stellar mass from 0.05 to 0.1
- Stronger dependence of metallicity on F160W mag for passive galaxies

Retrieval as a function of F160W mag

---- passive

- Strong dependence of dispersion of retrieved parameters with F160W mag
- For SF galaxies, ionization parameter, specific SFR and stellar mass from 0.05 dex to ~0.2 dex
- For passive ones, metallicity and dust from 0.05 dex to ~0.2 dex, stellar mass from 0.05 to 0.1
- Stronger dependence of metallicity on F160W mag for passive galaxies

Retrieval as a function of F160W mag

star forming
passive

- Strong dependence of dispersion of retrieved parameters with F160W mag
- For SF galaxies, ionization parameter, specific SFR and stellar mass from 0.05 dex to ~0.2 dex
- For passive ones, metallicity and dust from 0.05 dex to ~0.2 dex, stellar mass from 0.05 to 0.1
- Stronger dependence of metallicity on F160W mag for passive galaxies

Conclusions and future developments (1)

- **JWST** will provide us with unprecedented **high quality data** on high-*z* galaxies
- Need sophisticated models + advanced statistical tools to **maximize information extracted** from galaxy SEDs
- New framework for (high-z) SED analyses
 - **flexible** physical model with **coherent** treatment of different galaxy components
 - can build mock catalogues of galaxies and fit (pseudo) observations
- Approach validated on 10K galaxies at 0 < z < 8
- Combination of BEAGLE + other tools to simulate JWST/ NIRSpec observations and **optimize** future planning of **GTO/ GO** campaigns

Conclusions and future developments (2)

- Coherent implementation of physical recipes tailored at reproducing SEDs of high-z galaxies:
 - AGN emission (A. Feltre)
 - emission from **HII regions** with variable chemical abundances (J. Gutkin)
 - emission from **shock-ionized gas** (A. Wofford)
 - new prescription for high resolution UV (A. Vidal)
- "Data science": development of combined data- and modeldriven approaches to SED analyses (D. Stenning)

Thanks

Early galaxies and cosmic reionization

Early galaxies

- UV LF at high-*z* and faint mag
- Early chemical enrichment from nebular lines
- Dust content
- Stellar masses and SFH
- AGN-SF connection
- AGN and stellar feedback

Cosmic reionization

- Prod. rate of H-ioniz. photons from stellar pop. analyses
- LyC f_{esc} from UV slope + Balmer lines (need SFH too)
- LyC f_{esc} from Lya profiles
- Lya emitters LF evolution (and clustering)
- Lya f_{esc} (dust, gas geom., kinem.,)
- (QSOs and GRBs spectra probing intervening IGM)

Photo-z vs spec-z outliers

3 main sources of outliers

Contamination of photometry from nearby objects

Should be tackled at **data reduction** level Observed SED compatible with **multiple template SEDs** at different z

B

Can **identify** such cases, by adopting a **comprehensive model** for galaxy SEDs + tailored **statistical** approaches

No matching template SED to the observed SED

Must **modify** the adopted **model** for galaxy SEDs (or data calibration)

J. Chevallard - Insights into the determination of photometric redshifts with BEAGLE "LSST Photo-z workshop" - University of Pittsburgh - 7th April 2016

BANGS workflow

BANGS workflow

BANGS and JWST/NIRSpec

Science preparation

Simulations of observations

Catalogue of galaxy properties and SEDs

BANGS and JWST/NIRSpec

Science preparation

Simulations of observations

BANGS and JWST/NIRSpec

Science preparation

Simulations of observations

