AGN feedback and BH growth in high-redshift galaxies

Yohan Dubois – Institut d'Astrophysique de Paris (IAP)

Collaborators:

Rebekka Bieri, Julien Devriendt, Mélanie Habouzit, Sugata Kaviraj, Taysun Kimm, Clotilde Laigle, Christophe Pichon, Joki Rosdahl, Joe Silk, Adrianne Slyz, Romain Teyssier, Marta Volonteri, Alex Wagner

Horizon-AGN simulation (RAMSES code) http://horizon-simulation.org

25 Mpc/h

Take Home Message

- BH growth hindered by SN feedback in low-mass galaxies M_{*}<10⁹ M_{sun}
- Radiative AGN can drive massive outflows

Growing the first bright quasars

Observationnal facts:

- Very bright quasars in the SDSS with z>6 (Willott et al., 2003; Fan et al., 2006; Jiang et al., 2009)

- Detection of a 2.10⁹ M_{sun} BH at z=7 (*Mortlock et al.*, 2011)

Requirement:

- Need to grow from 10^{5} - 10^{6} M_{sun} up to 10^{9} M_{sun} in less than 700 Myrs! Eddington limit provides an e-folding time = 45 Myr

Question:

- How to bring gas sufficiently rapidly into the bulge of the galaxy?

- Direct accretion from the cosmic cold flows (Di Matteo et al., 2012) Cosmological context with large statistics but low resolution (~1kpc) Versus - Violent disc instabilities (Bournaud et al., 2011)

High resolution (1pc) but isolated disc

Growing the first bright quasars

Observationnal facts:

- Very bright quasars in the SDSS with z>6

(Willott et al., 2003; Fan et al., 2006; Jiang et al., 2009)

- Detection of a $2.10^9 M_{sun}$ BH at z=7

(Mortlock et al., 2011)

Requirement:

- Need to grow from 10^{5} - 10^{6} M_{sun} up to 10^{9} M_{sun} in less than 700 Myrs! Eddington limit provides an e-folding time = 45 Myr

Question:

- How to bring gas sufficiently rapidly into the bulge of the galaxy?

direct collapse

pop III remnant

20

Direct accretion from the cosmic cold flows (*Di Matteo et al., 2012*)
 Cosmological context with large statistics but low resolution (~1kpc) Versus
 Violent disc instabilities (Bournaud et al., 2011)

High resolution (1pc) but isolated disc

Growing the first bright quasars

Cosmological zooms 10 pc resolution

Dubois, Pichon, Haehnelt et al., 2012

Follow the white rabbit

Take the gas tracer particles that belong to the galactic bulge

Late time gas infall do more rotations before being accreted. Compatible with late-time cosmic filamentary infall having more angular momentum (Pichon et al., 2011, Kimm et al., arXiv:1106.0538, Codis et al., 2012)

Does the SF clump destruction have any impact on BH growth?

Dubois, Volonteri, Silk et al., 2014

Seth simulation

God of death, conflict, storms

$\begin{array}{c} M_{h} = 10^{12} \ M_{sun} \textcircled{0}{2} \ z = 2 \\ M_{DM,res} = 10^{5} \ M_{sun} \\ dx = 10 \ pc \end{array}$

BH growth delayed by efficient SN feedback

Bondi-capped-at-Eddington accretion rate

- AGN quasar heating f_{Edd}>0.01
- AGN radio jets f_{Edd}<0.01 (Dubois et al, 2012)

& BH spin evolution with spindependent radiative efficiency (and Eddington accretion rate) (Dubois et al, 2014)

Dubois, Volonteri et al, 2015

1 kpc 1 kpc z=5.80 z=5.65 SHDA face-or 1 kpc 1 kpc z=5.80 z=5.65 z=5.65

edge-

Dubois, Volonteri et al, 2015

Efficient SN feedback delays bulge formation

Dubois, Volonteri et al, 2015

Dubois, Volonteri et al, 2015

Runaway bulge growth w/o AGN

Keller, Wadsley, Couchman, 2016

Dubois, Volonteri et al, 2015

Observations

Reines & Volonteri, 2015

Confirmed in a statistical sense

10 Mpc volume with 80 pc spatial resolution Using pop III BH seeding

Habouzit, Volonteri, YD, sub.

HAGN	HnoAGN	HAGN	HnoAGN	HAGN	HnoAGN
V/ σ =0.3 log(M _s /M _{sun})=10.8	V/g=2.4 log(M _s /M _{sun})=11.4	V/a=0.9 log(M _s /M _{sun})=10.7	V/g=1.3	V/a=1.3 log(M _s /M _{sun})=10.7	V/g=2.1
V/ σ =0.5	V/g=1.7	V/a=0.9	V/a=1.1	V/a=1.6	V/ σ =1.6
log(M _s /M _{sun})=10.9	log(M _s /M _{sun})=11.5	log(M _s /M _{sun})=11.0	log(M _s /M _{sun})=11.2	log(M _s /M _{sun})=10.9	log(M _s /M _{sun})=11.0
V/ σ =0.2	V/g=0.9	V/a=1.3	V/a=1.9	V/a=1.5	V/g=2.0
	log(M _s /M _{sun})=12.1	log(M _s /M _{sun})=11.5	log(M _s /M _{sun})=12.0	log(M _s /M _{sun})=11.3	log(M _s /M _{sun})=11.7
V/σ=0.1	V/g=1.8	$V/\sigma = 0.6$	V/σ=2.0	V/a=1.0	$V/\sigma=2.4$
log(M _s /M _{sun})=11.8	log(Ms/Msun)=12.6	$\log(M_s/M_{sun}) = 11.5$	log(M _s /M _{sun})=12.1	log(M _s /M _{sun})=11.6	log(M _s /M _{sun})=12.1
V/σ=0.0	V/g=1.5	V/ σ =0.5	V/g=0.6	V/ σ =1.0	V/σ=1.5
log(M _s /M _{sun})=11.8	log(M _s /M _{sun})=12.6	log(M _s /M _{sun})=12.1	log(M _s /M _{sun})=13.0	log(M _s /M _{sun})=11.9	log(M _s /M _{sun})=12.5

Dubois, Peirani, et al, sub.

Mass function in Horizon-AGN

Radio mode or quasar mode ?

Volonteri, YD, Pichon, Devriendt, 2016

Star formation and feedback consumes/ removes/ prevents from collapsing the gas

Quasar mode AGN do not destroy discs

Dubois, Pichon et al, 2013

Quasar mode AGN strangulate galaxies (and can blow cold flows away)

Gas is driven out hot from the central galaxy due to AGN.

Cold filaments are repelled from the halo. Their structure is strongly perturbed.

Dubois, Pichon et al., 2013

Radiation hydrodynamics

Uses moment method with M1 closure to solve radiative transfer in RAMSES
(Rosdahl et al, 2013, Rosdahl & Teyssier 2015)
Solving non-equilibrium evolution of ionisation fractions of H, Hel, Hel

•Radiation Pressure + diffusion of multi-scattering IR radiation included

 $\kappa_{\rm D,UV} = 1000 \, {\rm g \, cm^{-2}}$ •Dust opacities $\kappa_{\rm D,IR} = 10 \, {\rm g \, cm^{-2}}$

 $\kappa_{\rm D} = 0$ if T > 10^5 K

•Solar metallicity with all metals in dust content •Two AGN luminosities 10⁴⁶ erg/s & 10⁴³ erg/s

•Reduced speed of light approximation c_{red} =0.2 c (Gnedin & Abel 2001)

Sazonov+ 2004

Big Caveat:
No gravity
No cooling
No SF

Shining a quasar in a multiphase medium

Log Normal pdf for gas density Power spectrum k^{-5/3} (and different cloud size) ICs from Wagner & Bicknell (2011)

Galaxy mass is 2.10¹⁰ M_{sun} With 100% gas (no DM, no stars) Resolution is 5 pc in clouds

Bieri, YD, Rosdahl+, sub.

Bieri, YD, Rosdahl+, sub.

Large Mass Outflow Rates

Bieri, YD, Rosdahl+, sub.

Optical depth and cloud break-up

Mechanical advantage

$$\dot{p} = (1 + \eta \tau_{\rm IR}) \frac{L}{c}$$

Bieri, YD, Rosdahl+, sub.

UV + opt + IR

UV + opt

 IR

Mechanical advantage considering different groups

Summary

- BH growth at high redshift:
 - Fed by cosmic cold flows early on and by disc instabilities later on
 - SN feedback can suppress BH growth in high-redshift lowmass galaxies M_{bulge}<10⁹ M_{sun} (or V_{esc}<270 km/s)
 - Burst of AGN activity triggered by wet mergers associated with compaction
- Quasar mode with photons only:
 - Can drive winds because of IR multi-scattering
 - Though fewer scatters than theoretically inferred
 - Destroys the disc
 - Need to be confirmed in more realistic set-up