The Physics of Reionization: Clues in the Local Universe

Part 1: Introduction Motivation – The Need for Feedback Local Analogs of High-z Galaxies Part 2: The role of galactic winds Wind physics & systematics Part 3: Implications for the EOR Indirect Indicators of escaping ionizing radiation **Direct confirmation** Part 4: Summary & Future Prospects Part 5: Bonus Analogs of Early Supermassive Black Holes?

Part 1: Introduction

- The population of star-forming galaxies at z > 6 could be enough to reionize the universe (e.g. Bouwens et al.)
- But...what fraction of the ionizing radiation actually escapes from these galaxies?

THE SF LAW IN NEARBY GALAXIES ON SUB-KPC SCALES

- H I column of ~10⁻³ M_{\odot} pc⁻² at Lyman edge absorbs all ionizing radiation
- Column densities are many orders-of-magnitude larger in SF galaxies
- How are very clean escape routes created/sustained? Feedback key.

Best investigated 'locally'

- Galaxies during the EoR cannot be observed below rest-frame Lyα
- Galaxies at these redshifts are extremely faint and difficult to study in any detail

Local Analogs

- Find relatively rare objects in the low-z universe whose properties best match high-z SF galaxies
- Will describe two such classes: "Lyman Break Analogs" and "Green Peas"

Lyman Break Analogs

001009	001054	004054	005439	005527	015028
020356	021348	032845	035733	040208	080232
080844	082001	082550	083803	092159	092336
092600	093813	102613	113303	124819	135355
143417	210358 .	214500	231812	232539	235347

- SDSS+GALEX data-mining
- Defined by FUV luminosity and surface brightness (Heckman;Hoopes;Overzier) to match LBGs

Green Peas (from Galaxy Zoo)

- Emission-line-dominated ([OIII] EQW ~ 10³ Å!)
- Compact, low-mass, low metallicity starbursts (Cardamone+;Henry+;Jaskot & Oey;Izotov+)

Comparisons

- **O/H**: LBAs ~8.1 to 8.8 GPs ~7.9 to 8.2
- Log M_{*}: LBAs ~9.0 to 10.5 GPs ~8.0 to 9.5
- SFR (M $_{\odot}$ /yr): LBAs ~3 to 100 GPs ~3 to 30
- Log sSFR (yr⁻¹): LBAs -9 to -8 GPs -8 to -7
- Radii (kpc): LBAs ~0.3 to 1.5 GPs ~0.5 to 1.5
- Bottom-Line: GPs are less massive and more metal poor systems than LBAs (with overlap)
- Reasonable matches to high-z SF galaxies

Part 2: The Role of Winds

 Can galactic winds create the clear channels for ionizing radiation to escape?

Energetics/Dynamics

- For every 100 M_{\odot} stars formed get 2 x 10^{51} ergs in KE (SNe ejecta and stellar winds)
- Collective effect: create gas at T ~ 10⁸ K with pressure >> ambient
- Expansion along direction of steepest pressure gradient
- Blow-out into halo
- Weakly bi-polar wind with $v_{max} \sim 3000$ km/s
- KE flux ~ 1% L_{bol}
- Momentum flux ~ $3 L_{bol}/c$

- Prime movers: energetic and tenuous "Wind Fluid" plus radiation pressure
- Most of the emission and absorption comes from denser outflowing ambient material

Absorption-Line Probes

- The impact of the wind on the environment can be probed using absorption-lines tracing warm gas
- The most-available probe beyond the local universe

Systematics of outflow velocites

 Both v_{out} and v_{out}/v_{cir} correlate most strongly with SFR/area (Heckman & Borthakur '16)

What's the Physics?

Consider a simple model of a population of 'clouds' being accelerated by a combination of wind-fluid + radiation pressure (out) and gravity (inwards) v_{out}/v_{cir} is then specified by the ratio of these two momentum fluxes

Outflow Velocity: Model vs. Data

A satisfactory match for such a simple model (Heckman+15) High outward pressure at launch site (high SFR/Area) produces high velocities

Three regimes: no-outflow, weak-outflow, strong-outflow

Clear separation of strong and weak outflows

Part 3: Implications for the EOR

- Indirect: lack of COS sensitivity below Ly edge
- Sample of 22 LBAs (Alexandroff et al +15) and 10 GPs (Henry et al. 15)

We are looking for indirect signs of 'leakiness'

Indirect Clue #1

- Optically-thick lines that trace the neutral gas are usually 'black' in the core (Si II multplets)
- But not always. Residual Flux (RF) > 0
- Indicative of holes in the HI ('picket fence')

Similar Properties in Green Peas

• Henry et al. (2015)

Indirect Clue #2

- Most Lyα emission-lines have classic P-Cygni profiles
- Some have a significant blue-shifted emission
- Holes in the HI on the front side of the outflow

Similar Profiles in Green Peas

 NOTE: These profile types are associated with fast outflows (*not a static ISM*)

- Smaller Lyα EQW implies Lyα photons suffer more attenuation by dust than FUV continuum
- See also Verhamme +15

Indirect Clue #4

- Abnormally weak [SII] optical line emission
- [SII] arises at the outer edge of Stromgren sphere
- Weak [SII] indicative of "matter-bounded" conditions (gas that is optically-thin to Lyman continuum)

Indirect Clue #5

- Abnormally high ratio [OIII]5007/[OII]3727
- Implies intense ionizing flux: U =Φ_{rad}/(n_{gas}c)
- High HII column for the "Stromgren Slab"

N_{HII} ~ 10²³ U cm⁻²

Jaskot & Oey; Izotov+

Consistency

- Statistically significant correlations between indirect indicators w/ scatter
- Alexandroff+15

Why are Some Galaxies Leaky? Compact Systems w/ High Velocity Outflows

- And correspondingly large SFR/Area
- Strong Outflows: $\dot{p}_* > 10 \, \dot{p}_{\rm crit}$
- Gravity unimportant & feedback dominates

'Extreme Feedback'?

- High SFR in a small region leads to a very high intensity of ionizing radiation and very large wind ram and radiation pressures
- These conditions create holes in the dense gas that allow ionizing radiation to escape

Direct Detections

- In two LBAs, COS is sensitive enough to directly observe below the Lyman edge
- 'Escape fractions' ~20% (Borthakur 14;Leitherer+16)

More direct detections in low-z analogs

5 Green-Pea-like starbursts (Izotov+16)

Validation of Indirect Indicators?

- Izotov+16 GPs: All have high [OIII]/[OII], weak [SII], large Lyα EQW, double-peaked Lyα profiles, high SFR/area. Don't know RF or v_{out}
- Borthakur et al. LBA: Large Lyα EQW, doublepeaked Lyα, large RF, weak [SII], high v_{out}, high SFR/area, normal [OIII]/[OII]
- Leitherer et al. LBA: Lyα absorption, low RF, high v_{out}, high SFR/area, [OIII]/[OII],[SII] not known
- Not perfect, but we are on the right track

Part 4: Summary

Observations of local analogs of high-z starforming galaxies suggest a number of indirect indicators of escaping ionizing radiation:

- Significant blue-shifted Lyα emission
- Significant residual flux in saturated lowionization metal absorption-lines
- Large Lyα equivalent widths
- Weak [SII] and strong [OIII] emission-lines
- Indirect indicators now verified in several cases
- These signposts linked to "extreme" feedback: High outflow speed, SFR/Area, wind-dominated

Future Prospects

- During EOR can not readily use FUV indicators
- Validate [SII]-weakness and high [OIII]/[OII]?
- JWST NIRSpec can classify galaxies with SFR > few M_{\odot} /year in the EOR (z ~ 6 to 9)

Bonus: Black Holes in LBA?

- Starbursts w/ sizes ~100 pc, masses of several billion solar masses in ~1/3 of LBAs (Overzier+)
- Should be ideal site for the formation/growth of supermassive black holes progenitor

Progenitors of Cusp-y Ellipticals?

- Masses, sizes, densities similar to "extra light" (cusps) seen in centers of L_{*} ellipticals
- Overzier+ (Solid black squares)

Excess Hard X-Ray Emission

- These LBAs (red circles) are over-luminous in the 2-10 keV band compared to starbursts by factor ~10
- Possible signature of AGN (Jia+;Basu-Zych+)

Progenitor-Analogs?

- If these are Compton-thin AGN, the implied $L_{Bol,AGN} \sim 10^9$ to $10^{10} L_{\odot}$
- This is a few % of L_{Bol,tot} (consistent with starburst domination of UV/O/MIR spectra)
- For L/L_{Edd} = 1, the implied BH masses would be ~10⁵ M_{\odot}. Similar to proto-SMBHs
- Suggestive, but not conclusive