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Summary

I This talk is not a review talk!

I Use very flexible models to marginalize out
calibration issues.

I Use data-driven models when you don’t
believe the physical models.

I Use Bayes to mix together competing models.
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Church of Bayes

I A model is a likelihood function and priors
over nuisance parameters.

I p(D | θ, α)
I p(α)

I If you want to perform MCMC, you need
priors over everything.

I p(θ) too
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Likelihood function

I The point of Bayes is to produce likelihood
functions!

I The likelihood is the thing that updates
beliefs.

I This is true for both observers and theorists.

I Likelihood functions are technically
subjective.

I They involve decisions.
I You use your judgement to make choices.
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Pragmatism

I You can’t make a measurement without a
model.

I p(D | θ, α) and p(α)

I However, often we can’t afford to live the
dream.

I All other methods for making measurements
can be seen as approximations to Bayes.

I (for example: estimate and uncertainty)
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Very important high-redshift science?

I Trigger warning: self-aggrandizement

I Around 1995, with Judy Cohen I had the
high-redshift record for a normal galaxy
(something like z = 0.8), but. . .

I In 1996, Roger Blandford and I wrote a paper
called “Gravitational Telescopes”, but. . .

I In 1996–1998 with Smail and Cohen I had the
deepest (faintest) galaxy counts in the U and
R bands, and (in 2000) at 3 microns but. . .

I Lesson learned: In the high-redshift business,
don’t rest on your laurels!
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Paradox of astrophysics

I The big secret of astronomy:

I All models are wrong!
I (strongly ruled out by the data)

I All data are wrong!
I (systematics and selections)
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Combining spectroscopy and photometry

I “I have both spectroscopy and photometry of
my sources, and I want to fit models. There
are so many more pixels in the spectroscopy
than the photometry, if I just multiply the
likelihoods, the spectroscopy dominates, the
photometry is ignored, and I get wrong
answers!”

— Many astronomers
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Combining spectroscopy and photometry
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Combining spectroscopy and photometry

I Why do we want to upweight the photometry
and downweight the spectroscopy?

I Because we don’t believe the calibration of
the spectroscopy.

I Sky subtraction, unaccounted noise sources.

I The right thing to do is to marginalize out
the calibration and etc.

I No reweighting is permitted!
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Combining spectroscopy and photometry

ln p(D | θ, α) = −1
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p(D | θ) =
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Combining spectroscopy and photometry
(Johnson et al., in prep)

I The flexible calibration vector marginalization
effectively down-weights the “shape” of the
spectrum.

I The procedure obviates
spectrophotometric calibration!
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Summary

I This talk is not a review talk!

I Use very flexible models to marginalize out
calibration issues.

I Use data-driven models when you don’t
believe the physical models.

I Use Bayes to mix together competing models.
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Models are wrong—Approaches

I Use no model: Data-driven

I Use every model ever made!

I Hybrid approaches
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Data-driven models (my personal usage)

I Make use of things you strongly believe:
I noise model & instrument resolution
I causal structure (shared parameters)

I Capitalize on huge amounts of data.

I Use an exceedingly flexible model.

I (Concepts of train, validate, and test.)

I (Every situation will be bespoke.)
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The Cannon: label transfer for stars

I A few of your stars have good labels (from
somewhere).

I Can you use this to label the other stars?

I Why would you want to do this?

I you don’t have good models at your
wavelengths?

I you want two surveys to be on the same
“system”?

I you have some stars at high SNR, some at
low SNR?

I you spent human time on some stars but
can’t on all?
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The Cannon: model

I ln p(fn | `n,θ)

I training step: optimize w.r.t. parameters θ
at fixed labels ` using training-set data

I linear least squares
I every wavelength λ treated independently

I test step: optimize w.r.t. labels ` at fixed
parameters θ using test-set (survey) data

I non-linear optimization
I every star treated independently
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The Cannon (Ness et al., 1501.07604)
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The Cannon 2: (Casey et al., 1603.03040)
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Data-driven models

I Huge successes (e.g., accuracy, precision,
adoption of The Cannon).

I Rarely will you meet the training-data
requirements.

I Their output can be hard to interpret
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Summary

I This talk is not a review talk!

I Use very flexible models to marginalize out
calibration issues.

I Use data-driven models when you don’t
believe the physical models.

I Use Bayes to mix together competing models.
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How to decide among different models?

I Different spectral template sets are different
and give different answers!

I Don’t decide.

I Throw all models in, let Hierarchical Bayes
sort them out.
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How to decide among different models?

I Every model template gets an adjustable prior
probability!

I Learn the prior for every template and the
posterior template for every star.

I Bayes goes for parsimony.
I the data decide which models to keep
I we did this in the star–galaxy separation

context
I (Fadely et al., 1206.4306)
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Star–galaxy separation (Fadely et al., 1206.4306)
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Star–galaxy separation (Fadely et al., 1206.4306)
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Star–galaxy separation (Fadely et al., 1206.4306)
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All models are wrong!

I What is the future?

I It is the combination of these ideas:
I Hierarchical Bayes will trim the list of

models to the models that work well.
I Data-driven models will capture the

information in the residuals.
I Something very flexible will be used to

marginalize out calibration issues.
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BUT

I None of this obviates building better
physical models!

I Physical models are interpretable and the
basis of everything we know.

I All statistical projects are ultimately in the
service of improving the physical
models.
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