

The First Billion Years Simulations

Sadegh Khochfar with C. Dalla Vecchia, J.P. Paardekooper, J. Johnson, A. Davies, B. Agarwal

The FiBY Project

Reduce 'the mass gap' by following the formation of galaxies from primordial star formation in min-haloes to massive haloes during the first billion years of the Universe

- GADGET-2 version used for the OWLS project (Schaye et al. 2010): SF; metal enrichment; metal line cooling from 11 elements; BH growth and feedback
- Thermal SN feedback (Dalla Vecchia & Schaye)
- Added molecular networks and cooling
- Added POPIII formation, evolution, and yields; seed BHs
- Added dust from PISN, AGB & SNII; thermal sputtering
- Inclusion of Lyman-Werner background (11.3 - $13.6 \, eV$
- Self-shielding against radiation
- Coupled to radiative transfer scheme SIMPLEX in post-processing

The First Billion Years Simulation

Theoretical Modeling of Cosmic Structures Max Planck Research Group Max Planck Institute for Extraterrestrial Physics

http://www.mpe.mpg.de/tmox/

 $V = (8 M pc)^{3}$ $N = 2 \times 1368^{3}$ $m_{gas} = 890 M_{\odot} h^{-1}$ $m_{DM} = 4375 M_{\odot} h^-$

The FiBY Project

Reduce 'the mass gap' by following the formation of galaxies from primordial star formation in min-haloes to massive haloes during the first billion years of the Universe

- GADGET-2 version used for the OWLS project (Schaye et al. 2010): SF; metal enrichment; metal line cooling from 11 elements; BH growth and feedback
- Thermal SN feedback (Dalla Vecchia & Schaye)
- Added molecular networks and cooling
- Added POPIII formation, evolution, and yields; seed BHs
- Added dust from PISN, AGB & SNII; thermal sputtering
- Inclusion of Lyman-Werner background (11.3 - $13.6 \, eV$
- Self-shielding against radiation
- Coupled to radiative transfer scheme SIMPLEX in post-processing

The First Billion Years Simulation

Theoretical Modeling of Cosmic Structures Max Planck Research Group Max Planck Institute for Extraterrestrial Physics

http://www.mpe.mpg.de/tmox/

 $V = (8 M pc)^{3}$ $N = 2 \times 1368^{3}$ $m_{gas} = 890 M_{\odot} h^{-1}$ $m_{DM} = 4375 M_{\odot} h^-$

FiBY Simulation Suite

Run	$L[{ m Mpc}/h]$	$M_{SPH}~[{ m M}_{\odot}/h]$	$M_{DM}~[{ m M}_\odot/h]$	N_{SPH}	N_{DM}	$\epsilon \; [pc]$	$n_{SF} \ [\mathrm{cm}^{-3}]$	z_f	colour
FiBY	5.68	890	4372	1368^{3}	1368^{3}	234	10	8.6	green
FiBY_S	2.84	890	4372	684^{3}	684^{3}	234	10	6	red
FiBY_M	5.68	7120	3.5×10^4	684^{3}	684^{3}	453	10	6	dark blue
FiBY_L	11.36	56960	$2.8 imes 10^5$	684^{3}	684^{3}	935	10	4	black
FiBY_XL	22.72	455680	2.24×10^6	684^{3}	684^{3}	1870	10	4	light blue
FiBY_LW	2.84	890	4375	684^{3}	684^{3}	234	10	6	yellow
FiBY_EQ	2.84	890	890	684^{3}	1121^{3}	143	10	6	purple
FiBY_DMO	2.84	_	4375	—	684^{3}	234	_	6	_

Resolve the Jeans mass at the onset of molecular hydrogen cooling.

At ~1/ccm, H₂ formation kicks in via:

 $H^- + H \rightarrow H^-_2 \rightarrow H_2 + e^-$

 Dynamical range in mass, volume and resolution covered is complementary to existing simulations at z=6

Stellar Mass function

Khochfar+16, in prep

- Predicted low-mass-slope is lower than the one extrapolated from observations.
- Limited observed dynamical range of masses biases towards steeper slopes.
- Slope gets steeper at high z

SN Feedback

Mass loading:

 $\frac{\dot{M}_{outflow}}{SFR}$

$$\dot{M}_* \propto M_*^{0.9} \to M_*^{0.9} (1+\eta) \propto M_{DM}^{1.15}$$

Metal-Mass Density

 $\eta =$

Dalla Vecchia & Khochfar 2016, in prep

SN Feedback

Mass loading:

 $\frac{\dot{M}_{outflow}}{SFR}$

$$\dot{M}_* \propto M_*^{0.9} \to M_*^{0.9} (1+\eta) \propto M_{DM}^{1.15}$$

Metal-Mass Density

 $\eta =$

Dalla Vecchia & Khochfar 2016, in prep

Escape Fractions

Paardekooper, SK et al. 2015

Escape Fractions

Paardekooper, SK et al. 2015

Role of POP-III Stars

SFR Main Sequence

Khochfar+16, in prep.

SFR-Metallicity

Summary

 Supernovae feedback regulates the low-mass slope of the GSMF, through two modes: 1. directly regulating SF in the lowest mass galaxies; 2. reducing the baryon fraction accreting onto more massive haloes

Low mass slopes are > -2 at z > 10

Escape fractions decline towards massive galaxies, and low mass galaxies drive re-ionization the Universe

 The metallicity of the ISM for SFRs ~ 10 solar masses/yr is on average 0.5 solar but shows a large scatter

Cold accretion flows are enriched in the ISM before getting converted into stars