Lyman Continuum Escape in Local Star Forming Galaxies with HST and COS

Claus Leitherer STScl

Svea Hernandez Univ. of Nijmegen

Janice Lee STScl

Sally Oey Univ. of Michigan

- Feasibility of observations down to 900 Å with the Cosmic Origins Spectrograph
- Measurement of the Lyman continuum in local star-forming galaxies
- o Interpretation and the reliability of the models

COS Capabilities at 900 – 1200 Å

 COS was designed for spectroscopy between 1150 and 3000 Å

- In the far-UV COS uses an XDL detector, which is identical to that used by FUSE
- Since there is no entrance window and only three reflections, some sensitivity down to (and below) 900 Å is expected

Effective area for G140L Segment B. Purple: measurement; red: spline fit; dashed: model for the effective area; dash-dotted: FUSE SiC1b, LiF1a and LiF2a channels

6/23/2016

- COS dark rate is time variable and scales with the solar radio flux
- o Need dedicated, contemporaneous dark files

6/23/2016

- Standard COS pipeline overestimates the background at low flux levels
- The standard COS pipeline assumes a generic 1-dimensional dark correction
- o Developed a revised background subtraction algorithm to account for time- and spatial variations

Comparison of the processed spectrum with the standard and the new, dedicated pipeline

6/23/2016

Lyman Continuum Escape in Local Star-Forming Galaxies

- o Pilot study as a proof of concept; therefore the sample is driven by instrument requirements
- Preexisting UV spectra with $F(1100) > 1 \times 10^{-14}$
- o $v > 10,000 \text{ km s}^{-1} \Rightarrow \delta \lambda > 30 \text{ Å}$
- o Presence of O stars from UV spectra

Galaxy Sample

Galaxy	Туре	E(B–V) _{MW} (mag)	v _{LSR} (km s ⁻¹)	D (Mpc)	M _B (mag)	E(B–V) _{int} (mag)	12+log O/H	SFR _{UV} (M₀yr⁻¹)
Tol 0440-381	HII	0.016	12,270	167	-20.2	0.15	8.2	3.2
Tol 1247-232	HII	0.089	14,400	207	-21.0	0.11	8.1	17
Mrk 54	BCG	0.015	13,470	191	-22.2	0.15	8.6	12

 The three galaxies were observed before with FUSE (Pellerin & Robert 2007; Grimes et al. 2009; Leitet et al. 2013)

Several studies specifically targeted the Lyman continuum

New COS Observations

- o G140L grating
- Wavelength coverage from <900 Å to
 ~2200 Å with a gap between 1165 Å and 1280 Å
- o 0.48 Å resolution (point source)
- o G140L vs. G130M; trade between resolution and wavelength coverage

Spectral region around the Lyman break

0

- o Corrected for intrinsic reddening
- o Dashed: noise
- o Restframe
- o ~35 Å of Lyman continuum
- o Geocoronal Lyman lines denoted
- o Thick bar: model
- o T=20 Myr, const. SF, Kroupa IMF, Geneva models with rotation

Lyman continuum escape fractions

Escape Fraction	Tol 0440-381	Tol 1247-232	Mrk 54
f _{esc/rel} (%)	< 60 ±13	22 ± 5.9	21 ± 6.1
f _{esc/abs} (%)	< 7.1 ± 1.1	4.5 ± 1.2	2.5 ± 0.72

Absolute escape fractions are a few %

- o Consistent with optical depth and high covering factor suggested by CII $\lambda 1036$
- o Significantly lower than in some LBG's \Rightarrow different ISM properties?

Reliability of the Models

- Model predicts an intrinsic Lyman break of ~0.4 dex for a standard population
- Kroupa IMF, constant star formation, T=20 Myr, Geneva evolution models with rotation, spherically extended, expanding, blanketed non-LTE atmospheres
- How do model assumptions and uncertainties affect the prediction?

Varying the duration of the SF episode has little effect for T>5 Myr as massive stars have reached equilibrium

Varying the IMF exponent between 1.6 and 3 changes the flux level by a factor of ~100 but has a small effect on the break itself

Extended model atmospheres accounting for winds decrease the break by up to 0.15 dex

6/23/2016

Evolution models with rotation have hotter, more luminous stars and increase the Lyman continuum flux by ~0.2 dex

Chemical composition has a surprisingly small influence due to the compensating effects of atmospheres and evolution models

Take-away Points

- COS has excellent sensitivity down to 900 Å and is well suited for Lyman continuum observations in the local universe
- Two local star-forming galaxies have absolute escape fractions of a few %
- Stellar models for the Lyman continuum have uncertainties of up to a factor of 2, mostly because of uncertain stellar evolution models