Extracting Accurate Physical Parameters From Broadband Photometry With a New Generation of SED Models

wavelength

Joel Leja

(Yale University —> Harvard University)

with Benjamin Johnson, Charlie Conroy, and Pieter van Dokkum

Simple SED models can result in misleading error bars and biased parameters

Galaxies are complex Many parameters

parameters control the observed SED

Highly degenerate problem when fitting broadband photometry

Two fitters with reasonable but different implementations can produce drastically different galaxy properties

It is **not yet possible** for models to fully match both the **observed SFRs** and the **observed stellar mass function**! also see Leja+14, Madau+14, Genel+14, Tomczak+15, Davé+16, and many others...!

Inference Framework

Prospector, maintained by Ben Johnson

- On-the-fly stellar population generation allows flexibility + high dimensionality
- Bayesian statistics with transparent + easily customizable priors
- MCMC ensemble sampling with the emcee python package
- fits photometry + spectroscopy
 with flexible noise modeling
- see poster #18 for more information

Stellar Population Synthesis

FSPS, maintained by Charlie Conroy

 performs fast, accurate, stateof-the-art stellar population synthesis

<u>Leja et al. in prep Model</u>

11 parameters + normalization

SFH (4 parameters)

Stars

Dust

Gas

flexible, allows for bursts and quenching (Simha+14)

Stellar Metallicity (1 parameter) metallicity distribution function

Attenuation (3 parameters) two-component Charlot & Fall model with variable attenuation curve

Emission (3 parameters) Draine & Li (2007) model and circumstellar dust

CLOUDY grids (0 parameters) nebular line and continuum emission

Test Sample

- 129 z=0 galaxies from
 Brown et al. 2014.
- GALEX to Spitzer 24 µm broadband imaging, +subsample have Herschel imaging
- Optical spectroscopy, aperture-matched to photometry
- Eclectic mix of stellar masses, sSFRs, and galaxy morphologies.

Model H_{α} compared to observed H_{α}

calculated from the Kennicutt+98 conversion between H_{α} and SFR

Model H_{α} compared to observed H_{α} using built-in CLOUDY H_{α} flux legend integrates ionizing UV flux from model, adding star-forming information about stellar metallicity composite AGN public version of MAGPHYS Prospector $\log(H_{\alpha})$ from broadband fit 10 10 9 q 8 8 6 5 mean offset=0.31 dex mean offset=0.04 dex biweight scatter=0.66 dex biweight scatter=0.15 dex ⁻ 10 5 9 10 5 $\log(H_{\alpha})$ observed $\log(H_{\alpha})$ observed

Dust Attenuation Towards HII Regions from the observed Balmer decrement

star-forming composite AGN

$The \ D_n(4000) \ Break$ test of stellar age and metallicity

star-forming composite AGN

We built a galaxy SED model that fits broadband photometry to predict H_α luminosities with both high accuracy and precision

in addition to H_{α} , we investigate and validate the following quantities:

- dust PAH mass fractions
- $H\delta$ absorptions
- $D_n(4000)$

- nebular attenuation
- stellar metallicities
- dust attenuation curves

The Future

simultaneous, self-consistent derivation of stellar masses(z) and star formation rates(M,z)

— new values? new consistency?