Galaxies at z=9-10 in the Hubble Frontier Fields and CLASH Surveys

Derek McLeod, Ross McLure & Jim Dunlop

Galaxies at z=9-10 in the Hubble Frontier Fields and CLASH Surveys

Motivation:

- 1. Galaxy evolution within the first 500 Myrs
- 2. Reionization (luminosity function $\rightarrow \rho_{UV} f_{esc} \rightarrow N_{ion}$)
- 3. JWST follow-up of course

Previous z~9-10 Searches

HUDF12: Ellis+13, McLure+13

Six z~9 candidates

Previous z~9-10 Searches

- HUDF12: Ellis+13, McLure+13
- Six z~9 candidates
- Initial constraint on the faint-end of the z=9 LF
- No constraint on bright-end

Previous z~9-10 Searches

CANDELS GOODS-N: bright z~10 candidates Oesch+14,15; Bouwens+15

CLASH: three z=9-10 candidates Bouwens+14

Steep decline in the luminosity density at z>8?

CANDELS imaging in GOODS-N

Luminosity density evolution at z>8

are we seeing "epoch of galaxy formation"?

McLeod et al. (2015, 2016): strategy

29 separate WFC3/IR pointings

Total area: 130 sq. arcmins

Example z=9 candidate from HFF

Hubble Frontier Fields

Six lensing clusters with six blank parallel fields

Deep imaging in seven filters (optical+nearIR)

Benefit of magnification due to gravitational lensing

Parallel fields provide significant extra area

Hubble Frontier Fields Survey

Hubble Frontier Fields Survey

Hubble Frontier Fields Survey

Gravitational lensing – the full "horror...."

Alternative published magnification maps for Abell 2477

Redshift z=9-10 galaxy selection

 focus on low magnification areas of HFF+CLASH+UDF (effectively a blank field survey)

 additional constraints at z~10 using magnified regions of CLASH

Results: Luminosity Function

~30 galaxies found at z>8.4 within a raw search area of around 130 sq. arcmin.

including five galaxies at z~10

constraints on the LF and luminosity density at z=9-10

Results: Luminosity Function

~30 galaxies found at z>8.4 within a raw search area of around 130 sq. arcmin.

including five galaxies at z~10

constraints on the LF and luminosity density at z=9-10

Results: Luminosity Density

Shallower drop in luminosity density than some previous studies:

blue filled circle: Oesch + (2014)

blue open circle: Ellis + (2013)

blue filled triangle: Ishigaki + (2015)

blue open triangle: McLure + (2013)

Results: model comparison

UV density fall-off in reasonable agreement with majority of galaxy evolution model predictions – but free to pick and choose...

Results: comparison with Planck

- Used to be a real struggle to reach WMAP τ measurement
- Fairly comfortable with updated Planck 2015 results

Results: comparison with Planck

- Used to be a real struggle to reach WMAP τ measurement
- Fairly comfortable with updated Planck 2015 results
- Planck 2016 measurement of τ =0.058 is now very consistent with our latest estimate of ρ_{UV} evolution

More evidence for smooth fall-off in UV luminosity density in redshift interval 8<z<10

 $z \sim 9 \phi^*$ evolution $z \sim 9 M^*$ evolution McLure+13 $z \sim 8$ Bowler+15 $z \sim 5.6.7$

-18

 M_{150}

og₁₀ (N/mag/Mpc

Evolution of UV luminosity density at high-redshift now in excellent agreement with Planck 2016 measurements of τ =0.058 and z_{RE} ~8

Planck 2016 update

Hernquist & Springel (2003) analytical prediction

 $\rho_{SFR} \alpha \exp(z/3)$: following dark matter halo evolution with no dust