

Spectroscopic Confirmation of a Luminous Galaxy at the Beginning of Cosmic Reionization

IAP Colloquium

Pascal Oesch

Yale University -> Geneva Observatory

in collaboration with **XDF Team+**: *G. Brammer,* R. Bouwens, I. Labbé, G. Illingworth, M. Franx, P. van Dokkum, D. Magee, V. Gonzalez, M. Trenti, C.M. Carollo, M. Stiavelli, R. Smit, L. Spitler, G. Fazio, M. Ashby, S. Willner, I. Momcheva, R. Skelton

Unprecedented Galaxy Samples at z>=4

(from HST's blank fields only)

Almost 1000 galaxies in the epoch of reionization at z>6 Current frontier: z~9-10

Sample of 4 Bright z~9-10 Galaxy Candidates

Spectroscopic Features of High-z Galaxies

Spitzer/IRAC colors allow us to exploit very wide area imaging data to search for rare, ultra-luminous z~8 galaxy candidates with robust photometric redshifts

Bright z~8 Galaxies with Spectroscopic Redshifts

EGS-zs8-1 now has a three line redshift z=7.73. Very large EW CIII] emission. (see Dan's Talk)

tinuum Break Redshifts

α disappears, need different technique to measure redshifts: continuum breaks

Note: at z>6 these are the Lyα continuum breaks

Problem: the background in the NIR is very high from the ground

HST Grism

HST Grism

Slide Credit: I. Momcheva

Wavelength

HST Grism

WISPS

WFC3 Infrared Spectroscpic Parallel Survey

FIGS and others...

Wavelength

GN-z10-1 $H_{160}=25.95$ $Z_{phot} = 10.2 \pm 0.4$ target of 12 orbit

target of 12 orbit WFC3 grism program

very bright z~10 sample from Oesch+14 is within reach of the WFC3/IR grism!

co

A

В

D

Neighbor Contamination in Grism Spectra

Even in a blank field, it's difficult to identify orientations with minimal contamination. Previous AGHAST spectra heavily contaminated.

Grism Extraction and Contamination Modeling

- Analysis based on 3D-HST Pipeline (Brammer+12, Momcheva+15)
- Interlaced combination of individual exposures
- Yields well-understood noise properties of the final spectra
- Full 2D modeling of contaminants

Grism Extraction and Contamination Modeling

Lyman Break Detection at z=11

- Overall continuum detection ~5.5 σ at $\lambda > 1.47 \ \mu m$
- Detected at 1-1.5σ per resolution element (91 Å)
- Detection in both epochs individually (but at low S/N)
- Break factor (f_{red}/f_{blue}) of >3.1
 (2σ, 500 Å) rules out z~2-3 interloper
 (Maximally old BC03 model at z=2.7 a factor of <2.7 defined the same way)
- Rule out emission line contaminant
- Best-fit redshift: z=11.09+-0.10

IAP, June 2016

Lyman Break Detection

- Overall continuum detection ~5.5 σ at $\lambda > 1.47 \ \mu m$
- Detected at 1-1.5σ per resolution element (91 Å)
- Detection in both epochs individually (but at low S/N)
- Break factor (f_{red}/f_{blue}) of >3.1
 (2σ, 500 Å) rules out z~2-3 interloper
 (Maximally old BC03 model at z=2.7 a factor of <2.7 defined the same way)
- Rule out emission line contaminant
- Best-fit redshift: z=11.09+-0.10

Best-fit redshift of *combined* spectra + photometry: $z=11.1 \pm 0.1$ (GN-z10-1 \rightarrow GN-z11!)

Physical Properties of GN-z11

- UV luminosity ~ 3×L*(z=7)
- Stellar mass ~ $10^9 M_{\odot}$
- SFR~24 M_☉/yr, age~40 Myr

Massive galaxy formation well under-way at z~11

1.6 µm

4.5 µm

1.2 um

UV slope β $(f_{\lambda} \propto \lambda^{\beta})$

 -2.5 ± 0.2^{d}

23

GN-z11 was "known" since 2008

From presentation slides of Ivo Labbe in 2008

same photo-z as with new data, but was ruled out as not likely to lie at z>9 due to single band detection and its luminosity (Bouwens+10)

GN-z11 is off the Charts

- Detection of GN-z11 in existing data is quite unexpected, given current models
- Expected to require 10-100x larger areas to find one such bright z~11 galaxy as GN-z11
- Difficult to draw conclusions based on one source. Need larger survey!

The UV Luminosity Function at the Cosmic Frontier

Including HFF galaxy candidates, now have a quite good estimate of the UV LF at $z\sim10$. It lies a factor $\sim4-5x$ below the extrapolation from lower redshift trends. *There just aren't a lot of z\sim10 galaxies out there!*

Slower evolution at bright end?

SFRD Evolution at z>8

Full analysis of first 4 HFFs confirms: SFRD evolves very rapidly beyond z~8, faster than across z=4-8

see also: Zheng+12, Coe+13, Bouwens+13/15, Ellis+13, McLure+13, Ishigaki+14

Rapid Decline Consistent with Models

Rapid decline in the cosmic SFRD is consistent with most models, but there is a considerable range in predicted evolutions at z>8.

Need to understand this before launch of JWST to plan most efficient surveys!

Summary

- Deep imaging with HST enabled the detection of a large sample of galaxies at z>3 (11'000), and extended our frontier into the heart of the cosmic reionization epoch (>800 galaxies at z~7-10). Spectroscopy lagging behind.
- Cosmic Frontier: Have obtained a grism continuum break redshift for a surprisingly luminous galaxy in the GOODS-N field: GN-z11 with zgrism=11.1
- GN-z11 is reliably detected in IRAC, enabling first insight into physical properties of galaxies at z>10: We have now explored 97% of cosmic history in build-up of star-formation and mass
- Discovery of GN-z11 in current search area is surprising according to models: Need larger area surveys to confirm the number densities of bright galaxies at z>10. Needs to be done now with HST, likely won't be done with JWST!
- Despite the discovery of GN-z11, the cosmic SFRD (dominated by faint galaxies) evolves declines rapidly at z>8 by a factor 10x in only 170 Myr