

RESOLVED PROPERTIES OF INTERMEDIATE REDSHIFT EXTENDED ARCS SEEN WITH MUSE

Vera Patrício

Johan Richard, Johany Martinez, Guillaume Mahler, David Lagattuta, Benjamin Clément, Hayley Finley, et al

GRAVITATIONAL LENSING

- Sources are magnified:
 - High spectral signal to noise; allows to probe unusual lines and stellar continuum.
 - Sources are spatially extended; allows to probe smaller spatial scales

MUSE

- Multi Unit Spectroscopic Explorer
 - IFU at UT4
 - 1 x 1 arcmin field of view
 - Optical: 4750 9500 Å
 - Spatial sampling: 0.2x0.2"
 - Spectral sampling: 1.25 Å

MUSE

Cluster A370 z = 1.034 21 " extension 300 - 900 pc in MUSE resolution

A sample of 7 lensed extended arcs (>5-20'') at intermediate redshift (0.6 < z < 1.5) that allows to:

- obtain high S/N integrated spectrum.
- derive resolved properties such as gas kinematics, extinction and metallicity maps.

GALAXIES AT INTERMEDIATE REDSHIFTS

•large fraction ($\sim > 30\%$) of rotating discs

- higher values of the velocity dispersion
- •very clumpy compared with local galaxies

GALAXIES AT INTERMEDIATE REDSHIFTS

•large fraction ($\sim > 30\%$) of rotating discs

- higher values of the velocity dispersion
- •very clumpy compared with local galaxies

SOME LENSING STUDIES

'we find a blue-shifted region of strong [N II]/H emission in the outer disk. (...) we propose that this elevated ratio region is contaminated by a significant fraction of shock excitation due to galactic outflows.'

CALENDS

'we find that the clumps have similar velocity dispersions to unlensed high-z samples while being smaller and less luminous (...) This could be an indication that these clumps are not virialised, and that their velocity dispersions may have additional contributions from star formation feedback or gravitational instability'

MUSE ARCS SAMPLE

MUSC nulti unit spectroscopic explorer

CALENDS

Cluster	z	μ	µ*SFR [M⊚/yr]	Z/Z⊚	E(B-V) [mag]	V/σ	clumps
AS1063	0.611	4.2	26	1.6	0.4	2	13
A2667	1.034	14	112	1.8	0.6*		16
A370	0.720	35	30	1.9	0.2	2.3	25
MACS0416	0.939	15	13	1.2			10
A2390	0.91	10	10	1.1	0	2.3	12
A521	1.04	13					36
MACS1206	1.03	30	20	1.2		2	25
MACS1149	1.488	23				3 **	27
					* Yuan+12.**Yuan+11		

Global Properties:

- $M* \sim 10^{10} \, M_{\odot}$
- high SFR (10-80 M $_{\odot}$ /yr),
- magnitude V~20-22
- rotating disks

AS1063 (Z=0.6) — STELLAR CONTINUUM

AS1063 (Z=0.6) — GAS EMISSION

A370 (Z = 0.7) — STELLAR EMISSION

RAI

A370 (Z = 0.7) — GAS EMISSION

RAI

A2667 (Z=1.034)

CALENDS

A2667 (Z=1.034) — OUTFLOWS THROUGH FEII* EMISSION

mι

JSQ

CALENDS

A2667 (Z=1.034) — OUTFLOWS THROUGH FEII* EMISSION

MORE TO COME SOON!

