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Overview

* Reionization and The Big Picture.

 Direct measurements of f, . from star-forming
galaxies.

 The future.



The Big Picture




Cosmic Timeline & Reionization
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* Much theoretical work (simulations and semi-analytic models) on
the process of reionization.

* Observations (CMB, z~6 QSOs, galaxy Lya emission statistics) tell
us about the beginning and end of reionization.

* Planned 21-cm experiments.

(Robertson et al. 2010)



Sources of Ionizing Photons

* While they are very luminous,
quasars are also very rare.

 Furthermore, the number
density of optically luminous

Ié ' A\\Y QSOs appears to drop off from
/ & from a peak level at z~2, both

© 108 Ne .
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! SDSS ML fixed' |\ redshifts.

= — SDSS ML var

> — 2Q7 * Number density of faint QSOs

at z~4-6 is uncertain, but
reasonable estimates of QSO
contribution at these redshifts
suggests they are not important.
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(Richards et al. 2006) Epoch of

Reionization



Sources of Ionizing Photons

® Total

[0 AGN: Cowie et al (2009)

O Galaxies (Total-Cowie et al AGN)
AGN: Haardt & Madau (2012)

(Becker & Bolton 2013)

e At the same time, the rate at
which the ionizing background
evolves is much more gradual.

* When the intergalactic medium
(IGM) became reionized, there
were probably not enough
quasars to do the job.

* Therefore, we must understand
the contribution of galaxies to
reionization and to the ionizing
background over a large range in
redshifts.
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Sources of Ionizing Photons

Lookback time (Gyr)

Redshift

* Critical questions: What are the
sources that reionized the universe?
What is the ionizing photon production
rate from galaxies and their
contribution to the global ionization rate
of hydrogen?

* To answer these questions, we must
chart the abundance and star-formation
rates of galaxies as a function of
redshift, and estimatef,,., the escape
fraction of ionizing photons from star-
forming galaxies.



Simple Models of Reionization

* Evolution of ionized fraction of the universe is described as a balance between
ionization and recombination (e.g., Robertson et al. 2015):

ﬁion _ QHH
<nH> Irec

Qun =

* The ionizing photon production rate is expressed as:

hion — fescfionpSFR

* The evolution of the ionized fraction directly follows from ndot,,,. pspr follows
from measured UV luminosity function. ;,, follows from population synthesis
models. Realistic estimates of f,. are critical for understanding how Qyy;
evolves.



Direct Measurements of fesc




What is a direct measurement?

Rest Wavelength (A)
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(Siana et al. 2015)

 Spectroscopy: Spectroscopy below the Lyman limit at 912 A.

* Imaging: Broadband or narrowband image entirely below the
Lyman limit at 912 A.



Measuring f

Intergalactic absorption

* Unfortunately, at the epoch of
* VLT/VIMOSIB reionization, the Lya forest is so thick
o <T> (8808A-9104) L. . ) .
that it is impossible to determine f,
directly from z>6 (or even z>4) galaxies.

* Solution: measuref,,. from lower-
redshift galaxies, relate these sources to
objects at z>6 (see Heckman’s talk).
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* Highest practical redshift for direct f,,
measurements is z~3.5.

Redshift




Definitions of f__., etc.

€SC

* What is 1, LyC=880-910 A
fesc(LyC) — M

LLyC’,in

* How are f . and f ., related?

esc L C r T N.
feseret(LyC) = J{esc((15yOO)) (Lgoo/ L1s00)tram

escrel US€TUl for deriving global quantities, such as g, ., based on
LBG UV luminosity function

* Can be re-arranged:

f900/f1500

fesc,rel (L}’C) —

fesc(LyC) — fesc,rel (Lyc)fesc(1500)

fo00/ fis00 = f, esc,rel(LyC) (Lgoo/L1s00)tram

We measure this \ Simulations of
z~3 IGM opacity
in LyC: 0.17-0.55



Typical intrinsic spectrum

of massive star
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Intrinsic LQ/LLLC

| Single Burst SF

Constant SF

(Siana et al. 2007)

* Key for estimating f, . is an
assumption about the intrinsic
ratio of non-ionizing UV (i.e.
“UV,” 1500 A) and ionizing-UV
(i.e. “LyC,” 900 A) flux density,
Lyv/Liyc.

* BC03 Stellar population
synthesis models predict
Lyy/Lyyc~7 for reasonable
assumptions of ages,
metallicities, and IMFs.

e Recall: We evaluate “UV” at
~1500A, and “LyC” at ~900A
(880-910 A).



Intrinsic LE/LLLC

100 Myr, cont, binaries

* Key for estimating f, . is an
assumption about the intrinsic
ratio of non-ionizing UV (i.e.
“UV,” 1500 A) and ionizing-UV
(i.e. “LyC,” 900 A) flux density,
Lyv/Liyc.

100 Myr, starburst, single

* BPASS and S99 models
suggest a lower ratio of
Lyy/Liyc (~4) when evolution of

Wavelength\ A interacting binaries and stellar
rotation are included. Lower
(Stanway et al. 2016) for lower metallicity (~3),

different IMF.



Global Implications

* Compute g, . (ionizing luminosity density), based on gy (non-ionizing UV
luminosity density) and <Fy,/F;,> corrected for IGM absorption:

* For gy, integrate luminosity function of population of interest (e.g., Reddy et
al. 2008 for LBGs; Ouchi et al. 2008 for LAES).

* &1, I8 directly related to ndot,,,



Global Implications

* Based on g ¢ and Al,,;, (mean free path for ionizing photons at z~3),
compute contribution from LBGs to the global hydrogen ionization rate, I'.

oyr=hydrogen ionization cross-section;
Al= mean free path; g,y;=ionizing
luminosity density (g1,c); h=Planck’ s
constant; og;=spectral index of ionizing
radiation.




(Borthakur et al. 2014)
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7~ LyC Measurements

* For ~2 decades, no convincing direct
detections of LyC emission from local
galaxies or z~1-2.

J0921+4509: Dereddened spectrum (8= -1.37)

* Haro 11 (controversial; Bergvall et al.
2006, Grimes et al. 2007; Leitet et al.
2011).

920 940 960 980 1000 1020 1040
Rest Wavelength (A)
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(Izotov et al. 2016a)
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7~ LyC Measurements

Observed wavelength (A)
1,140 1,160

J0925+1403

Rest-frame wavelength (&)

Lyman limit

* For ~2 decades, no convincing direct
detections of LyC emission from local
galaxies or z~1-2.

* Haro 11 (controversial; Bergvall et al.
2006, Grimes et al. 2007; Leitet et al.
2011).
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First Detection of z~3 LyC Emission?

Relative f,
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* First reported detection of LyC
emission at high redshiftin Steidel et al.
(2001).

* Composite spectrum: 29 LBGs at
<z>=3.4+/-0.09

» Apparently significant LyC flux in
composite spectrum - 5 times more
ionizing flux than QSOs at z~3

* Probably spurious.



Measuring Galaxy Spectra:
Keck/LRIS

* Low Resolution Imaging
Spectrometer (LRIS), a
dichroic spectrograph
sensitive to optical light

 Light is splitinto blue
and red portions, sent to 2
different detectors

(LRIS at the Cassegrain focus behind
the Keck primary mirror, P. Shopbell)




More apparent z~3 LyC Detections

Lyman limit, 912 A yman Continuum Deltections
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Narrowband Imaging and z~3 LyC

 Narrowband imaging, just below the Lyman limit, provides complementary
technique for detecting escaping ionizing radiation

* Why narrowband? At z~3, LyC mean free path is only Az=0.35 (~80 A rest
frame), so it’ s important to probe just below the Lyman limit. Broadband
filter would tell you more about IGM opacity than escape fraction.

* Protoclusters are efficient targets for narrowband imaging (lots of LBGs
and LAEs at the same redshift):

SSA22a 01549

HS1549 Field
150 Galaxies, z 21.6




Narrowband Imaging and z~3 LyC

 Narrowband imaging, just below the Lyman limit, provides complementary
technique for detecting escaping ionizing radiation

* Why narrowband? At z~3, LyC mean free path is only Az=0.35 (~80 A rest
frame), so it’ s important to probe just below the Lyman limit. Broadband
filter would tell you more about IGM opacity than escape fraction.

* Protoclusters are efficient targets for narrowband imaging (lots of LBGs
and LAEs at the same redshift):

SSA22a

;Lyman Limit ya

z=3.09 LBG Composite NB4980
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(Nestor et al. 2011) (Mostardi et al. 2013)

* See also work by Iwata et al. (2008), Micheva et al. (2015).



Narrowband Imaging and z~3 LyC

NB3640 SSA22a

NB3640

MD34 * 4

(Nestor et al. 2013)

« LBG/LAE LyC detection rate is 10- et :5*57' L0
20% (Mostardi et al. 2013)




Narrowband Imaging and z~3 LyC

NB3640 SSA22a

NB3640

MD34 * 4

(Nestor et al. 2013)

NB3640/NB3420 (i.e., LyC) emission
frequently appears offset from non-
ionizing UV continuum (0.3”-1.3”).
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(Mostardi et al. 2013)




Narrowband Imaging and z~3 LyC

SSA22a Q1549
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(Nestor et al. 2013) (Mostardi et al. 2013)

 UV/LyC ratios are uncomfortably small for some LAEs. NB3640-R, or
NB3420-V colors ~0 are not easy to explain with stellar population
synthesis models. Too blue. Exotic stellar populations (Inoue et al. 2011)?



(Vanzella et al. 2012)

What about contamination?
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Vanzella et al. (2012): HST
imaging shows that apparently
offset sources of LyC at z~3 are
actually low-redshift interlopers
(photometric redshifts).

Tonizing radiation from a source
at z~3 corresponds to the same
wavelength as non-ionizing
radiation from a source at, e.g.,
z~2.

HST resolution required to show
what’s going on.

In ground-based studies, we
could only make a statistical
correction for contamination.



(Mostardi et al. 2015)

What about contamination?

:Lyman limit ! Balmer break

We imaged 4 LBGs and 12 LAEs in
Q1549 with apparent LyC
detections using HST UVJH.
Photometric redshifts for each
subcomponent.

J and H bracket Balmer break at

0.5 1.0
Wavelength [um]




(Mostardi et al. 2015)

lae2158b
(foreground
ontaminant)

What about contamlnatlon"
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Galaxies are
typically lumpy!

Examples of

subcomponent
SEDs.

VJH colors of
contaminant stand
out from those of
z~3 objects.

These z~3 examples
don’t have LyC
detections.



(Mostardi et al. 2015)

What about contamination?
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separate
d by
0.58”.

One object out of 16 has robust LyC detection not due to obvious

foreground contamination: MDS.

Two components. Need to show definitively that MD5b is at z=3.15.



What about contamination?

(Siana et al. 2015)

LyC UV
aug9em16

« HST UVIJH imaging in SSA22a plus near-IR spectroscopy.
*  Clumpy morphologies revealed by HST. Apparent LyC emission only
associated with one of the clumps.



What about contamination?
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* Keck/NIRSPEC spectra of C49 and MD32 show evidence for low-
redshiftinterlopers. Offsetis ~0.5”. Difficult to resolve in optical data, for
MD32 in particular.

* Contamination is very important! HST/AQ spatial resolution required,
or excellent near-IR seeing.



What about contamination?

Contamination rate is comparable to detection rate.

Ground-based, seeing-limited observations (imaging and spectroscopy)
cannot be interpreted without HST-level spatial resolution.

A spectroscopic or photometric redshiftis required for each subcomponent
associated with LyC emission.

Premature to calculate global quantities (¢, ¢, I', ndot,,,), relate z~3
“leaker” properties to those of potential z>6 LyC leakers.




Normalised flux
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Predicting LyC

How to predict which objects are “leakers” based on non-ionizing emission?
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* Lyo emission with
significant flux at
systemic and negative
velocities?

* Interstellar absorption
lines that are saturated
but not black (non-unity
covering fraction)?

* High [OIII]/[OII] ratios
indicative of density-
bounded HII regions?



A Cautionary Tale

* How to predict which objects are “leakers” based on non-ionizing emission?

* Cosmic Horseshoe,

F606W (UV)  F275W (LyC)
T ecaeas L G lensed galaxy at z=2.38.

P i,

* Interstellar absorption
lines that are saturated
but not black (non-unity
covering fraction)?

* HST F275W imaging
reveals upper limit on
LyC emission, f;_..,=0.08,
S times lower than
predicted by ISM lines.
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(Vanzella et al. 2016)

Some Hope: Ion2

Ton2 (z=3.2, in GOODS-S) has both deep spectrum and HST imaging.

n VLT/VIMOS LR Blue

Relative flux
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F336W
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W< 890K
Lyman Continuum

F435W
pix 0.03"

* Spectrum and ground-
based U-band imaging
suggests LyC emission.

* HST imaging shows
that F336W (i.e., LyC) is
associated with bright
component at z=3.2.



(Shapley et al. 2016)

Some Hope: Q1549-C25

Q1549-C25 (z=3.15) has both deep spectrum and HST imaging.

f00o=0.035+0.008 wly

5500 6000
Observed Wavelength

4950

5000 5050 5100
Observed Wavelength

ey

5150

* Spectrum suggests LyC
emission (4.4c).

* HST imaging shows
that there is no
contamination.



What’s next?

* Requirement: promising sample of LyC detections, HST follow-up.

* Steidel et al. (in prep.): Sample of
LyC not detected 124 LBGs with ~8 hour Keck/LRIS
e spectra covering the LyC region.

* 13/124 apparently detected
spectroscopicallyin LyC.

LyC not detected ¢ FOllOW up With HST U ~ JH
We detected imaging, determine contamination
T AP ' rate.
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* Other spectroscopy: LRIS,
MOSFIRE.

Rest Wavelength ()

* Increase current robust LyC sample
by an order of magnitude.



Closing remarks

* Identifying the sources responsible for reionizing the intergalactic
medium (IGM) is an important goal for observational cosmology.

* Direct measurements of leaking LyC are only possible at z<3.5.

e Contamination from lower-redshift sources is a huge challenge to
overcome when making this measurement.

* We need a much larger sample of robust detections to calculate
global ionization-related quantities and relate z<=3 leaking galaxies
to those observed during reionization.

* We have identified the ideal z~3 sample for follow-up with HST.

m900’A3~27.2
m900,AB~28

m900’A3~30.5



