Nebular emission line ratios in $z\sim 2-3$ star-forming galaxies: ionization, excitation, and N/O ratios in KBSS-MOSEIRE

Allison Strom (Caltech)

Chuck Steidel (Caltech) Gwen Rudie (Carnegie) Ryan Trainor (UC Berkeley) Max Pettini (IoA Cambridge) Naveen Reddy (UC Riverside)

Good SNR rest-optical spectra available for individual galaxies

Allison Strom, 32nd IAP Colloquium, 23 June 2016

Good SNR rest-optical spectra available for individual galaxies

Allison Strom, 32nd IAP Colloquium, 23 June 2016

Keck Baryonic Structure Survey (KBSS)

Centered on 15 of the brightest quasars in the sky (total area = 0.24 deg^2)

BPT diagrams for $z\sim 2-3$ star-forming galaxies

$[OIII]\lambda 5007/H\beta$ with galaxy properties

O32 vs. R23: powerful probe of ionization and excitation

How can we collectively explain these observations?

harder ionizing radiation

more ionizing photons (e.g., Kewley+15)

enhanced N/O at fixed O/H (e.g., Masters+14, Shapley+15, Sanders+16, Masters+16)

Properties of large-offset galaxies reveal important differences

KBSS-MOSFIRE galaxies have similar densities

Evidence for higher excitation at fixed gas-phase abundance

SDSS "twins" selected to match KBSS-MOSFIRE in O32 and R23

High-z galaxies still exhibit offset in N2 BPT

Offset consistent with an increase in N/O

Strom et al. (in prep.)

KBSS-MOSFIRE galaxies

- are 10 times more massive than SDSS twins
- have higher sSFRs than SDSS twins
- have higher N/O ratios than SDSS twins

Evidence for similar abundance patterns in all galaxies

Allison Strom, 32nd IAP Colloquium, 23 June 2016

Contraining log(U) and Z_{neb} with photoionization models

Ionization parameter with Ne3O2 and O32

$$U = n_{g}/n_{H} \approx n_{g}/n_{e}$$

- O32 and Ne3O2 relatively insensitive to changes in gas-phase metallicity
- $log(U)_{KBSS} = [-3.1, -2.5]$

•
$$log(U)_{SDSS} = [-3.5, -3.3]$$

Allison Strom, 32nd IAP Colloquium, 23 June 2016

R23 sensitive to shape of EUV ionizing radiation

Harder EUV spectra naturally reproduce range of observations

Compared to $z\sim0$, high-redshift star-forming galaxies...

- 1. Have higher R23 and [OIII]/Hβ, consistent with harder EUV radiation
- 2. Have **higher N/O** and are **10 times more massive** than *z*~0 galaxies matched in O32 and R23 (ionization and excitation)
- 3. Are well-described by models with **moderate gas-phase abundance** and **apparently metal-poor stars**

Galaxies at *z*~2-3 have **higher O/Fe ratios** than typical *z*~0 galaxies as a result of **substantially more rapid star-formation histories**

Impact of star formation history on nebular diagnostics

- Significant recent star formation will cause higher excitation at fixed gasphase abundance
- Strong-line calibrations rely on the underlying correlation between
 - 1. shape of the ionizing radiation (related to stellar metallicity)
 - 2. gas-phase metallicity
- Local calibrations for metallicity likely systematically inconsistent for high-z galaxies, especially at high 12+log(O/H)
- Must carefully choose local "analogs"!

High-redshift galaxies are different in important ways

- 1. Typical high-z galaxies have "hotter" stars due to effects of binary evolution that are most important at low stellar metallicities (and high O/Fe)
- 2. High O/Fe ratios likely to occur when recent star formation dominates contributions to ISM chemistry (via CCSNe), as in systems with high sSFR
- 3. Scarcity of massive SF-dominated galaxies at *z*~0 presents challenges for establishing appropriate nebular diagnostics for high-*z* galaxies