Star-formation and Feedback in "high" redshift dwarf galaxies

Ryan Trainor (Berkeley/Miller Institute) with Charles Steidel, Eliot Quataert, Mariska Kriek, Gwen Rudie, Allison Strom, Shanon Oden, Anna de Graaff

Erb 2015 (Nature)

24 June 2016

image by Matt Auger from Micheva, Oey, Jaskot & James (in prep.)

24 June 2016

faint galaxies are the key?

24 June 2016

How does...

stellar feedback star formation photon escape

...vary across the GLF?

24 June 2016

z=2-6 dwarfs are (mostly) LAEs

~80% of SF galaxies with $M_* \sim 10^8 - 10^9 M_{\odot}$ show strong Ly α emission (vs. 50% at $M_* \sim 10^{10} M_{\odot}$) See also Shapley+03, Stark+14...

24 June 2016

Keck Baryonic Structure Survey

- **KBSS** includes 1000+ LBGs in QSO fields at $z \approx 2-3$
 - − $L \approx L_*$ galaxies, log $M_* \approx 9.5$ −11.5, $M_{UV} \approx 20.5$
 - e.g., talks by Steidel, Strom
- **KBSS-Lya** includes ~1000 LAEs, 318 with spectra
 - − $L \approx 0.1 L_*$ galaxies, log $M_* \approx 8-9$, M_{UV} ≈ 18

KBSS-Ly α LAE sample (z ~ 2 - 3)

- 1000 photometric LAEs
- 318 rest-UV spectra
- 55 rest-optical spectra (and counting...)

[OIII]+HB EW ≈ 1200Å

24 June 2016

KBSS-Ly α LAE sample (z ~ 2 - 3)

Physical Morphologies

Lyα Spectral Morphologies

Leiden)

Keck/LRIS Lyα spectra RFT+2015

m_{AB} > 28.3 Shanon Oden (Berkeley > UCSB)

feedback in dwarfs

24 June 2016

feedback physics in the UV spectrum

675 object-hour Keck/LRIS composite spectrum

24 June 2016

gas kinematics in line emission

24 June 2016

LAE composite metal-enriched outflows

correlated absorption and emission

As Lya EW increases (or luminosity decreases), outflow velocity decreases

24 June 2016

star formation in dwarfs

24 June 2016

LBG BPT diagram

24 June 2016

BPT-Lyα relation (LBGs)

KBSS LBGs show a gradient in $W_{Ly\alpha}$

- Emitters have high ionization, low metallicity
- Absorbers have low ionization, high metallicity

Average faint LAEs consistent with highest-ionization LBGs (talk by Erb)

See also: Hagen+2016, Nakajima+2013

24 June 2016

many (hard) ionizing photons

24 June 2016

faint LAEs are low-metallicity tail

Also low dust: $E(B-V)_{neb} \approx 0.06$ (variation with lum.)

ultra faint, metal-poor galaxies

Downturn in [OIII]/Hβ for faintest LAEs (undetected in continuum)

 $F160W > 28.3 (3\sigma)$

See also Henry+13, Masters+14

6 objects consistent with $Z = 2-6\% Z_{\odot}$

24 June 2016

summary

dwarf galaxies (faint LAEs) have... low-velocity outflows low gas covering fractions (including HI) blue Lyα components ***** likely small sizes LyC leaker high Lyα escape fractions properties low metallicities (talks by Heckman, low dust content Verhamme, etc.) high ionization parameters ...compared to more luminous LBGs