Using Lyman-Alpha to detect Lyman Continuum escape from galaxies

Anne Verhamme

Observatoire de Genève

Ivana Orlitova, Daniel Schaerer, Matthew Hayes Yuri Izotov, Gabor Worseck, Natalia Guseva, Trin Thuan

1) Using Lylpha to detect Lyman Continuum Emitters

- LyC leakgage from optically thin H II region
- LyC leakage from riddled ISM

Ly α properties of 5 newly discovered LyC Emitters

- Description of our 5 LyC emitters
- Their Lya properties
 - A strong Lyα emission
 - narrow double-peaked profiles

LyC leakgage from optically thin H II region LyC leakage from riddled ISM

Context : LyC leaking galaxies

Zackrisson+13

LyC leakgage from optically thin H II region LyC leakage from riddled ISM

LyC leakage from optically thin H II region

$$\begin{aligned} f_{\rm esc}(LyC) &= e^{-\tau_{\rm ion}} \\ \text{with } \tau_{\rm ion} &= \sigma(\nu) N_{\rm HI} \\ \sigma(\nu) &= \sigma_{\nu_0} (\nu/\nu_0)^{-3} \\ \sigma_{\nu_0} &= 6.3 \times 10^{-18} \text{ cm}^2 \\ \sigma_{\rm on} &= 1 \rightarrow N_{\rm HI} \sim 1.6 \times 10^{17} \text{ cm}^{-2} \end{aligned}$$

Lyman-alpha optical depth of a LyC optically thin H II region $\tau_{ion} = 1 \rightarrow \tau_{Ly\alpha} = 5.88 \times 10^{-14} (12.85/b) N_{HI} \sim 10^4$

 τ_{i}

LyC leakgage from optically thin H II region LyC leakage from riddled ISM

LyC leakage from optically thin H II region

Verhamme et al. 2015

Lyman-alpha spectra from LyC optically thin H II region...

.. are narrow and the location of their peak is close to the line center

LyC leakgage from optically thin H II region LyC leakage from riddled ISM

LyC leakage from optically thin H II region

Verhamme et al. 2015

Lyman-alpha spectra from LyC optically thin H II region

Vpeak $\gg 150 \text{ km.s}^{-1} \rightarrow log(N_{\rm HI}) > 18$ When double peaks, a small peak separation (< 300 km.s⁻¹) indicates a low column density of the neutral gas (N_{HI} $\lesssim 18$).

IAPcolloquium, Paris

Anne Verhamme

 $Ly\alpha$ as a proxi for LyC

23.06.16

LyC leakgage from optically thin H II region LyC leakage from riddled ISM

LyC leakage from optically thin H II region

Verhamme et al. 2015

Lyman-alpha spectra from LyC optically thin H II region

Vpeak measurement is slightly affected by the spectral resolution Vpeak decreases when Vexp increases.

IAPcolloquium, Paris

LyC leakgage from optically thin H II region LyC leakage from riddled ISM

LyC leakage from riddled ISM

$$f_{\rm esc} = 1 - CF$$

IAPcolloquium, Paris

LyC leakgage from optically thin H II region LyC leakage from riddled ISM

LyC leakage from riddled ISM

Lyman-alpha spectra from riddled H II region

Whatever the velocity field, the maximum of the profile shifts to the line center, $Vpeak = 0 \text{ km.s}^{-1}$.

LyC leakgage from optically thin H II region LyC leakage from riddled ISM

LyC leakage from riddled ISM

Lyman-alpha spectra from riddled H II region

Whatever the velocity field, the maximum of the profile shifts to the line center, $Vpeak = 0 \text{ km.s}^{-1}$.

Description of our 5 LyC emitters Their Lya properties

Plan

Using Lyα to detect Lyman Continuum Emitters
LyC leakgage from optically thin H II region
LyC leakage from riddled ISM

Ly α properties of 5 newly discovered LyC Emitters

- Description of our 5 LyC emitters
- Their Lya properties
 - A strong Lyα emission
 - narrow double-peaked profiles

Description of our 5 LyC emitters Their Lya properties

5 newly discovered Lyman Continuum Emitters

Name	z	$EW(H\beta)$	$12 + \log O/H$	(4959+5007)/3727	GALEX FUV flux
		(Å)	0,	~ //	$(erg \ s^{-1}cm^{-2} Å^{-1})$
J0925 + 1403	0.301	253	7.94	5	2.28e-16
J1152 + 3400	0.342	168	8.10	8	3.47e-16
J1333+6246	0.318	135	7.81	5	3.27e-16
J1442 - 0209	0.294	201	7.94	6	4.76e-16
J1503 + 3644	0.355	238	8.10	7	2.49e-16

Izotov et al. 2016b, MNRAS

Description of our 5 LyC emitters Their Lya properties

5 newly discovered Lyman Continuum Emitters

Izotov et al. 2016a, Nature

Description of our 5 LyC emitters Their Lya properties

5 newly discovered Lyman Continuum Emitters

Izotov et al. 2016a, Nature

absolute escape fraction of ionising photons fesc $\sim 7\%$

Description of our 5 LyC emitters Their Lya properties

5 newly discovered Lyman Continuum Emitters

Izotov et al. 2016b, MNRAS

Description of our 5 LyC emitters Their Lya properties

5 newly discovered Lyman Continuum Emitters

Izotov et al. 2016b, MNRAS

absolute escape fraction of ionising photons fesc ~ 6 to 13%

Description of our 5 LyC emitters Their Lya properties

5 newly discovered Lyman Continuum Emitters

Description of our 5 LyC emitters Their Lya properties

LCEs are strong Lyman Alpha emitters

Description of our 5 LyC emitters Their Lya properties

LCEs are strong Lyman Alpha emitters

Description of our 5 LyC emitters Their Lya properties

LCEs have narrow double-peaked profiles

Description of our 5 LyC emitters Their Lya properties

Their Ly α properties : narrow double-peaked profiles

IAPcolloquium, Paris

Anne Verhamme

Description of our 5 LyC emitters Their Lya properties

Their Ly α properties : comparison with LBAs and GPs

IAPcolloquium, Paris

Anne Verhamme

Description of our 5 LyC emitters Their Lya properties

Connexion between indirect LyC leakage indicators

Description of our 5 LyC emitters Their Lya properties

Insight on the physical reason for LyC escape

Description of our 5 LyC emitters Their Lya properties

Using Ly α to detect LyC leakers

Verhamme et al. 2016, submitted

- * a strong Ly α emission : EW(Ly α)> 70Å,
- * fesc(LyC)> 10% \rightarrow fesc(Lya)> 20%
- * peaks separation < 300 400 km/s, driven by the blue peak shift * no underlying Ly α absorption

Description of our 5 LyC emitters Their Lya properties

Using Ly α to detect LyC leakers

Verhamme et al. 2016, submitted

- * a strong Ly α emission : EW(Ly α)> 70Å,
- * fesc(LyC)> 10% \rightarrow fesc(Lya)> 20%
- * peaks separation < 300 400 km/s, driven by the blue peak shift
- * no underlying Ly α absorption
- * high OIII/OII ratio
- * compact