Secular evolution of stellar cluster @GC

J-B. Fouvrty C. Pichon J. Magorrian P-H. Chavanis

The case of quasi-Keplerian systems

- Describe the secular evolution driven by finite-\(N\) effects for a quasi-Keplerian system
- inhomogeneous
- dynamically degenerate
- stable
- self-gravitating
- discrete

- How efficiently are BHs fed?

Some references:
- Rauch, Tremaine (1996): Resonant relaxation
- Meritt et al. (2011): Schwarzschild barrier
- Bar-Oz, Alexander (2014, 2016): \(\eta\)-formalism
- Sridhar, Touma (2016): Gilbert’s method for Landau
- Fouvrty, Pichon, Magorrian (2016): BBGKY approach

BBGKY Hierarchy truncation @ 3 pt function

\(\overline{r} = (J, \theta) \)

- BBGKY-\(n=1\) equation

\[\frac{\partial F}{\partial t} + \left[\bar{F}, \bar{\nabla} + \bar{\nabla}_T \right] \frac{1}{N} \int dR_1 |\bar{C}(R_1, R_2, T_{11})| dJ_{11} = 0. \]

- BBGKY-\(n=2\) equation

\[\frac{1}{2} \frac{\partial}{\partial t} \left[\bar{C}(R_1, R_2), \bar{C}(R_2, R_1) \right] + \bar{F}(R_1) \bar{F}(R_2), T_{11} \frac{1}{(2\pi)^4} \left(2\pi^2 k^2 \right) \]

\[\frac{3}{2} \bar{\nabla} \left[\bar{C}(R_1, R_2), \bar{C}(R_1, R_1) \right] \bar{F}(R_1), T_{11} |dJ_{11}| + (1 \leftrightarrow 2) = 0. \] (50)

using averaging over fast angle

\[\bar{F}(J, \theta) = \int \frac{d\theta}{(2\pi)^2} \bar{F}(J, \theta, \theta^0). \]

Bogoliubov’s synchronization hypothesis

Physical origin of Schwarzschild barrier

One PN and 1.5PN relativistic correction

\[\Omega = \frac{\partial \bar{F}}{\partial J} \]

\(\Omega^{rel} \)

\(\Omega^{self} \)

\(\Omega^{eff} \)

\(\omega_J \)

Disc radius

Effect scales like the square density of wires

Stochastic diffusion

Resonant relaxation drives the disc to a configuration of lower angular momentum @ fixed semi major axis

\(J_L + L = \text{const} \)

Flux map in action space

\[\Delta N \]

\(\Delta t \)

\(\bar{F}(J_1, J_2) \)

\(L_c (10^{10}) \)

Angular momentum

Increasing eccentricity

\(L_c (10^{10}) \)

Mass segregation near SMBH

Multi species?

Quasi-Keplerian systems

- BH dominates the dynamics: \(r=M_s/M_\ast < 1 \)
 \(\Rightarrow \) Keplerian orbits are closed.
- Dynamical degeneracy: \(\forall J, n, \Omega_{Kep}(J) = 0 \).
 \(\Rightarrow \) Delaunay variables

\[J = (I, \Omega, \nu) \]

\(\Rightarrow \) Keplerian potentials, one has to deal with additional dynamical degeneracies

\(E = \bar{E}(J, \theta) \)

System phase-mixed w.r.t. the Keplerian phase

\[F(J, \theta) \neq \bar{F}(\epsilon) \]

Keplerian wires precess in \(\theta^0 \)

\[\Omega^0 = \frac{\partial \bar{F}}{\partial J} = \frac{\partial \bar{F}}{\partial J} + \frac{\partial \bar{F}}{\partial J} \]

Disc has mass

SMBH relativistic correction

The degenerate Balescu-Lenard equation

- The master equation of resonant relaxation

\[\frac{\partial \bar{F}(J, \theta)}{\partial t} = - \frac{1}{N} \sum_{m_1 m_2} \int dJ_1 \frac{dJ_2}{2\pi^2} \left[\frac{\partial}{\partial J_1} \frac{\partial}{\partial J_2} \right] \bar{F}(J_1, \theta) \bar{F}(J_2, \theta) \]

- Some properties:

\(\bar{F}(J, \theta) \) Orbital distortion.

\(\bar{F}(J, \theta) \) KH resonant relaxation.

\(\bar{F}(J, \theta) \) Adiabatic conservation.

\(\delta \) Resonance on precessions.

\(1/\Delta_{\text{ext}} \) Self-gravity.

Individual stochastic diffusion

- Self-consistent diffusion of the system as a whole

\(\Rightarrow \) Anisotropic Balescu-Lenard equation

\[\frac{\partial \bar{F}(J, \theta)}{\partial t} = \frac{\partial}{\partial J} A(J, \tau) \bar{F}(J, \theta) + D(J, \tau) \frac{\partial \bar{F}(J, \theta)}{\partial J} \]

- Individual dynamics of a wire at position \(J(\tau) \)

\(\Rightarrow \) Stochastic Langevin equation \(\bar{F}(\tau) \)

\[\frac{\partial J}{\partial \tau} = h(J, \tau) + g(J, \tau) \bar{F}(\tau) \]

\(-\tau \) Process

- In the Langevin’s rewriting, \(F \) particles are dressed orbits.

\(\Rightarrow \) Huge gains in steps for integration.