
 Secular evolution of stellar cluster @GC 
Quasi-Keplerian systems

• BH dominates the dynamics: "=M?/M•⌧1

=) Keplerian orbits are closed.

• Dynamical degeneracy: 8J ,n·⌦Kep(J)=0 .

=) Delaunay variables

J =
�
I=Jr+L| {z }
Fast J f

, L , Lz| {z }
Slow J

s

�
; ✓ =

�
✓f|{z}

Kep.
phase

, ✓

s

|{z}
Int. of
motion

�

⌦Kep = (⌦Kep, 0, 0) .

• Orbits characterised by wires’ coordinates

E = (J ,✓s) .

• System phase-mixed w.r.t. the Kep. phase

F (J ,✓) ' F (E) .
• Keplerian wires precess in ✓

s

⌦s =
@�prec

@J s
=

@[�self+�rel+�ext ]

@J s
.
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The case of quasi-Keplerian systems

• Describe the secular evolution driven by finite�N e↵ects
for a quasi-Keplerian system

I inhomogeneous

I dynamically degenerate

I stable

I self-gravitating

I discrete

• How e�ciently are BHs fed?

• Some references:
I Rauch, Tremaine (1996): Resonant relaxation
I Meritt et al. (2011): Schwarzschild barrier
I Bar-Or, Alexander (2014, 2016): ⌘�formalism
I Sridhar, Touma (2016): Gilbert’s method for Landau
I Fouvry, Pichon, Magorrian (2016): BBGKY approach
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Disc has mass SMBH relativistic correction

The degenerate Balescu-Lenard equation
• The master equation of resonant relaxation

@ F (J , ⌧)
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• Some properties:

I F (J , ⌧) : Orbital distorsion.

I @⌧ : ⌧= tM?/M•, BH dominance.

I 1/N : 1/N resonant relaxation.

I @/@J s

1

· : Adiabatic conservation.

I �
D

: Resonance on precessions.

I 1/D
m

s

1

,ms

2

: Self-gravity.

Fouvry et al. (2016)
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Individual stochastic di↵usion

• Self-consistent di↵usion of the system as a whole

=) Anisotropic Balescu-Lenard equation

@F

@⌧
=

@

@J s
·

A(J , ⌧)F (J , ⌧) +D(J , ⌧)· @F

@J s

�
.

A(F ) drift vector, D(F ) di↵usion tensor.

• Individual dynamics of a wire at position J (⌧)

=) Stochastic Langevin equation - (Risken (1996))

dJ
d⌧

= h(J , ⌧) + g(J , ⌧)· �(⌧) .

h and g vector and tensor, and � stochastic Langevin forces.

=) Dual equation, whose ensemble average gives back BL.

• In the Langevin’s rewriting, particles are dressed orbits.

=) Huge gains in timesteps for integration.

44 / 47

"Ito" 
Process

J.-B. Fouvry et al.: The secular evolution of quasi-Keplerian systems. II. Razor-thin discs.

where g�1(0)= {x | g(x)=0} is the hypersurface of (generically) di-
mension (d�1) defined by the constraint g(x)=0, and d�(x) is its
surface measure. In the present context, the resonance condition
is given by the function

g(J2) = ⌦s(J1)�⌦s(J2) . (38)

For any given value of J1, and introducing !=⌦s(J1), one may
then define the critical resonant curve �(!) as

�(!) =
�
J2

���⌦s(J2)=!
 
. (39)

This curve corresponds to the location in action space of all the
wires which are in resonance with the precessing wire of action J1.
This is illustrated in figure 2 for the disc from section 2.2. Once

Fig. 2: Illustration of the total precession frequencies ⌦s=⌦s
self+⌦

s
rel

in action space in the neighbourhood of the razor-thin quasi-Keplerian
disc introduced in section 2.2. The disc being typically 0.4 pc away
from the central BH, the precession frequencies are dominated by the
mass precession frequencies ⌦s

self . These mass precession frequencies
are retrograde, so that ⌦s(J)<0. The contours in this plot are spaced
linearly between 95% and 5% of the minimum precession frequency
satisfying ⌦s

min'�0.2. Because the degenerate Landau equation (19)
does not involve any resonance vectors, the contours levels of ⌦s also
correspond to the critical resonant line �(!) introduced in equation (39).

these resonant lines have been identified, the Landau drift and
di↵usion coe�cients from equation (25) may straightforwardly
be computed, and read

A(J1)=
Z

�(⌦s(J1))
d�

GA(J1, J2)
|r(⌦s(J2))| ; D(J1)=

Z

�(⌦s(J1))
d�

GD(J1, J2)
|r(⌦)s(J2)| .

(40)

Equation (40) introduced the two functions GA and GD as

GA(J1, J2) = � ⇡
N?

���Atot(J1, J2)
���2 @F?
@L2
,

GD(J1, J2) =
⇡

N?

���Atot(J1, J2)
���2 F?(J2) , (41)

as well as the resonant contribution |r(⌦s(J2))| given by

|r(⌦s(J2))| =
s

@⌦s

@L2

�2
+

@⌦s

@I2

�2
. (42)

3.2. Self-induced resonant diffusion

Following the method presented in the previous section, one may
then study how the disc’s DF, F?, from equation (8) will get to dif-
fuse on secular timescales under the e↵ect of its own discreteness.
This asks us to evaluate the pairwise interaction potential U12 on
the grid elements following the Gauss method from Appendix A.
One may then determine the precession frequencies (illustrated in
figure 2), as well as the disc’s total bare susceptibility coe�cients
|Atot|2. Integrating equation (40) along the associated resonant
lines, one can compute the disc’s self-consistent drift and dif-
fusion coe�cients, A(J) and D(J). This allows finally for the
computation of the total di↵usion flux FL, introduced in equa-
tion (26). The contours of this flux are illustrated in figure 3. Let

Fig. 3: Illustration of the di↵usion flux, FL, predicted by the degenerate
Landau equation (26) for the razor-thin quasi-Keplerian disc introduced
in section 2.2. Following the convention from equation (26), the direction
of di↵usion of individual particles in action space is given by �FL. Red
contours, for which FL<0, correspond to regions where particles tend to
di↵use towards larger L, i.e. decrease their eccentricity. Blue contours,
for which FL>0, are associated with regions in action space, where
individual particle tend to di↵use towards smaller L, i.e. increase their
eccentricity. The contours are spaced linearly between the minimum
and the maximum of FL. Within the units of equation (6), the maximum
value for the positive blue contours is given by F max

L '10�10, while the
minimum value for the negative red contours reads F min

L '�3⇥10�10.

us first recall that because the equations of motion were aver-
aged w.r.t. the fast Keplerian orbital motion, i.e. w.r.t. w the angle
associated with the action I, the di↵usion is one-dimensional
and only occurs w.r.t. L. As a consequence, individual Keplerian
wires conserve their fast action I (i.e. conserve their semi-major
axis), and can only di↵use in the L�direction (i.e. change their
eccentricity). In figure 3, this translates to the fact that particles
di↵use along horizontal lines. Following the convention from
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the contributions from the di↵usion coe�cient in equation (58)
lead to a Langevin drift coe�cient h taking both positive and
negative values in figure 10.

Figures 9 and 10 recover the di↵usion barrier for a particle
test wire of fast action It. The location of this quenching of the
resonant di↵usion can be interpreted as given by the value of the
slow action LSchw., such that

⌦s(LSchw., It) ' ⌦max
disc , (62)

where ⌦max
disc is the typical maximum precession frequency in the

disc region, i.e. the maximum value of ⌦s in figure 2. For a test
wire such that Lt.LSchw., its relativistic Schwarschild precession
makes it precess too fast to allow for a resonant coupling with
the disc and the di↵usion quenches. Following the criteria from
equation (62), the location of the barrier is then given in action
space by the curve �Schw., such that

�Schw. =
⇢
(Lt, It)

��� ⌦s(Lt, It) = ⌦max
disc

�
. (63)

The location of this barrier is illustrated in figure 8, where it is
given by the left-most level contours of ⌦s. Test particles below
this barrier are precessing too fast to resonate anymore with the
disc. Di↵erent test particles having di↵erent fast actions It will
therefore see their stochastic di↵usion quench for di↵erent values
of their slow action Lt.

Having computed the Langevin coe�cients h and g in fig-
ure 10, it is then straightforward to integrate the Langevin equa-
tion (57) forward in time. Such realisations are illustrated in
figure 11, which shows again that particles cannot di↵use be-

Fig. 11: Illustration of the stochastic motion, t 7!Lt(t), of a test star of
mass µt=µ? for di↵erent initial conditions. The trajectory of the star is
described by the Langevin equation (57), with the Langevin coe�cients
h and g obtained in figure 10. Because these coe�cients tend to 0 for
low enough angular momentum (Lt2.7⇥103), test stars cannot di↵use
closer to the BH. This quenching of the resonant di↵usion in the inner
regions of the system is associated with the Schwarzshild barrier and is
illustrated with the gray region.

low the Schwarzschild barrier. These evolution equations share
some similarities with the equations of motions of individual stars.
However, the significant gain of this framework is that it directly
describes the stochastic motion of Keplerian wires, so that the Ke-
plerian motion of stars along their quasi-Keplerian ellipses does
not have to be resolved anymore. This allows for much larger
timesteps in equation (57), which are orders of magnitude larger
than those required to solve the individual trajectories of stars.
Relativistic e↵ects and the associated post-Newtonian corrections
are also e↵ortlessly accounted for.

Not only can one use the Langevin equation (57) to describe
the evolution of an individual test particle, but also the secular
di↵usion of a population of wires as a whole. This is illustrated in
figure 12, which shows how the long-term di↵usion of the PDF of
a population of test particles may also be estimated. The method

Fig. 12: Illustration of the di↵usion of a population of test wires of
individual mass µt=µ? as a function of time. The evolution of each star is
driven by the Langevin equation (57). The initial PDF of the population is
represented by the red histogram, while the colored histograms describe
the statistics of the population after a time �T =300 and 2�T . Solving
the dynamics of this population via the Langevin equation (57) allows for
the integration forward in time of the Fokker-Planck equation (56), which
describes the di↵usion of the test particles’ PDF as a whole, without
resorting to direct N�body simulations.

followed in figure 12 allows indeed for the e↵ective integration
forward in time of the Fokker-Planck equation (56). To do so,
one samples the test particle’s PDF, P, with test particles. The
stochastic motion of each test particle is then integrated forward
in time via the Langevin equation (57) for a time �T that can
be much larger than the Keplerian dynamical time of the system.
After a time �T , the population of test particles is then distributed
according to the PDF P(t=�T ), illustrated in figure 12. In this
figure, even if the considered time of integration was short, one
can already note that some particles tend to accumulate at the
“Schwarzschild barrier”, where the di↵usion quenches.

The sampling method used in figure 12 may also be used to
integrate forward in time the self-consistent Landau equation (19).
To do so, one has to estimate the disc’s drift and di↵usion coe�-
cients A(J) and D(J). The disc’s initial DF, F? is then sampled
by a finite number of test stars Nsamp.. Assuming temporarily that
the drift and di↵usion coe�cients are frozen, one may then inte-
grate the motion of these Nsamp. test stars following the Langevin
equation (57). This allows us to estimate P(t=�T )'F?(t=�T ),
provided that �T is not too large compared to the timescale of
resonant relaxation. Having estimated the disc’s new DF at the
time �T , one may then recompute the new drift and di↵usion
coe�cients of the disc, A(J,�T ) and D(J,�T ). Sampling once
again this new DF with Nsamp. test stars, one can proceed further.
Provided that the timestep �T is chosen accordingly, i.e. pro-
vided that the disc’s self-consistent drift and di↵usion coe�cients
do not change much on the timescale �T , the present step-by-
step approach allows therefore to integrate forward in time the
self-consistent Landau equation (19).

4.3. Resonant dynamical friction on a massive perturber

The previous section described the stochastic di↵usion of an
individual test star, whose individual mass is identical to that
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Figure 6.1.1: Extracted from figure 16 of Gillessen et al. (2009). Observations of the individual trajectories of twenty
stars orbiting in the vicinity of Sgr A⇤, the super massive black hole at the centre of the Milky Way. Because of the
dominant mass of the central BH, the stars follow quasi-Keplerian orbits.

of particles, the Balescu-Lenard formalism, presented in section 2.3, appears as perfectly well suited.
However, in the context of quasi-Keplerian systems, the application of the Balescu-Lenard formalism in
its original form raises two additional di�culties, which ask for a particular attention. The first di�culty
comes from the fact that one has to describe the dynamics of a system within a possibly non-inertical
set of coordinates. This requires to pay a careful attention to canonical changes of coordinates as will be
emphasised in section 6.2. The second di�culty arises from the intrinsic dynamical degeneracies of the
Keplerian problem, i.e. the fact that the Keplerian frequencies⌦Kep satisfy commensurability conditions
of the form n·⌦Kep'0, for some vectors of integers n=(n1, n2, n3), as will be discussed in section 6.3.
Indeed, the Balescu-Lenard formalism in its original form assumes that resonances are localised in action
space and are not degenerate. As a consequence, it must be re-examined before it can be applied to the
degeneracies inherent to quasi-Keplerian systems.

In the upcoming sections, we will show how one can account for these degeneracies in the case of
a cluster of N particles orbiting a massive, possibly relativistic, central body. This will require to first
average the equations of motion over the fast Keplerian angle associated with the orbital motion of stars
around the BH. Once such an averaging is carried out, we will emphasise how the generic Balescu-
Lenard formalism applies straightforwardly and yields the associated degenerate secular collisional
equation. As will be detailed in the upcoming sections, this equation captures the drift and di�usion
of particles’ actions induced by their mutual resonant interaction at the frequency shifts present in ad-
dition to the mean Keplerian dynamics, e.g., possibly induced by the cluster’s self-gravity or relativistic
e�ects. This new equation will be shown to be ideally suited to describe the secular evolution of a large
set of particles orbiting a massive central object, by capturing the secular e�ects of sequences of polarised
wire-wire interactions (associated with scalar or vector resonant relaxation) on the underlying cluster’s
orbital structure.

This chapter is organised as follows. Section 6.2 specifies the BBGKY hierarchy to systems with
a finite number of particles orbiting a central massive component, by using canonical coordinates to
account adequately for the motion of the central body. Section 6.3 describes the angle-action coordinates
appropriate for such quasi-Keplerian systems and discusses how the dynamical degeneracies should be
dealt with. Section 6.4 averages the corresponding dynamical equations over the fast Keplerian angles
and discusses the newly obtained set of coupled evolution equations. Section 6.5 presents in detail the
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of the stars forming the discrete quasi-Keplerian disc. Inspired
by the multi-component calculations presented in section 3.3,
one could also consider the individual di↵usion of a massive
perturber whose mass would not be the same as the particles
from the discrete bath. Noting the mass of this test perturber as
µt and the individual mass of the particles of the bath as µ?, the
Fokker-Planck equation (56) becomes

@P
@⌧
=
@

@L

 µt

µ?
A(J) P(J) + D(J)

@P
@L

�
, (64)

where P is the PDF of the massive perturber. In equation (64),
the drift and di↵usion coe�cients, A(J) and D(J), were already
introduced in equation (24) and are sourced by the discrete quasi-
Keplerian disc. When accounting for a possible di↵erent mass
for the test particle, the equilibrium solution from equation (60)
immediately becomes

Peq(L, I) = C(I) exp
⇥� (µt/µ?)Veq(L, I)

⇤
, (65)

where the potential Veq(L, I) was introduced in equation (61).
Following equation (58), one can straightforwardly obtain the

Langevin coe�cients associated with the Fokker-Planck equa-
tion (64). They read

h = � µt

µ?
A +

1
2
@D
@L

; g =
p

D . (66)

In equation (66), one can note that only the Langevin drift co-
e�cient h depends on the mass of the test particle. Figure 13
illustrates this coe�cient for a massive test particle of mass
µt=100µ?. Let us note that the definition from equation (25) is

Fig. 13: Illustration of the stochastic Langevin coe�cient Lt 7!h(Lt, It)
associated with the stochastic di↵usion of a massive perturber of mass
µt=100µ? along the gray dashed line, It=cst., identified in figure 8. The
coe�cient g associated with the stochastic of this massive perturber is
the same as in figure 10. Following equation (64), one can note that for a
massive enough perturber (or for light enough bath particles), one has
h(Jt)!�(µt/µ?)A(Jt) and g(Jt)!0. This non-vanishing contribution
is the friction force by polarisation, which drives dynamical friction.

such that the disc’s drift and di↵usion coe�cients, A(J) and D(J),
satisfy A,D/µ?. The larger the number of particles in the disc,
the slower the di↵usion. As a consequence, in the limit of a colli-
sionless bath, i.e. when µ?!0, only the drift component remains
in equation (64). This corresponds to the friction force by polari-
sation, which does not vanish in the collisionless limit (Heyvaerts
et al. 2017). Following equation (66), one can note that in this col-
lisionless limit only the drift coe�cient h(Jt)!�(µt/µ?) A(Jt)

remains in the Langevin equation (57). The evolution of the test
particle is fully deterministic and, following equation (57), reads

dLt

dt
= h(Lt, It) = �µt

A
µ?
, (67)

where, following equation (25), A/µ? is independent of µ?. Equa-
tion (67) is the equation describing dynamical friction. Com-
paring figures 10 and 13, one can note that for a test particle
of individual mass µt=100µ?, the Langevin coe�cients satisfy
g.h. As a consequence, the evolution of such a heavy particle
can be approximated by the deterministic equation (67). Com-
paring figures 10 and 13, one can also note that for a massive
enough test particle, one has h(Lt)>0 for all values of Lt. As a
consequence, the dynamical friction undergone by this massive
perturber induces a drift towards larger Lt, i.e. towards smaller
eccentricities: the orbit of this massive perturber circularises.

Expanding on section 3.3, let us finally investigate the process
of mass segregtion using the Langevin formalism. Having already
estimated the disc’s drift and di↵usion coe�cients in figure 9,
one may now rely on equation (66) to compute the Langevin co-
e�cients of populations of test stars of di↵erent individual mass.
Figure 14 presents the respective di↵usion of two populations of
test stars of individual mass µt=µ? and µt=20µ?, distributed ini-
tially according to the same PDF. In agreement with the findings

Fig. 14: Illustration of the di↵usion of two populations of test stars of
di↵erent individual mass. The two populations are initially distributed
according to the same PDF, illustrated with the black histogram. The
evolution of each test star is described by the Langevin equation associ-
ated with the Fokker-Planck equation (64). After a time �T =300, the
PDF of the light popopulation (of individual mass µt=µ?) is given by the
red histogram, while the heavy population (of individual mass µt=20µ?)
follows the PDF given by the blue histogram. Because of the prefactor
(µt/µ?) present in equation (64), populations of di↵erent individual mass
do not follow the same stochastic motions, and the system undergoes a
mass segregation. Light (red) particles tend to become more eccentric
and heavy (blue) particles tend to become less eccentric.

of section 3.3, figure 14 predicts that populations of test particles
of di↵erent mass segregate in the vicinity of the disc. The heavier
particles will tend towards orbits of larger angular momentum,
i.e. towards less eccentric orbits. One can also note that some
light particles already tend to accumulate at the “Schwarzschild
barrier”, where resonant di↵usion stops.

5. Conclusion

We investigated the secular dynamics of a razor-thin axisymmet-
ric discrete quasi-Keplerian disc surrounding a supermassive BH.
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At first order in ", the third term from equation (39) can immedi-
ately be rewritten as

"

N

Z
d�2
⇥C(�1,�2),U12

⇤
(1) =

"(2⇡)d�k

N

Z
dR2
⇥C(R1,R2),U12

⇤
(1) .

Thanks to this equation and equations(41) and keeping only terms
of order ", one can finally rewrite equation (39) as

@F
@t
+"(2⇡)d�k⇥F,�+�a

⇤
+
"(2⇡)d�k

N

Z
dR2
⇥C(R1,R2),U12

⇤
(1) = 0 .

(46)

In equation (46), note that all the functions appearing in the
Poisson bracket only depend on R1= (J1, ✓s

1). As a consequence,
the Poisson brackets defined in equation (34) take the shortened
form

⇥
G1(R),G2(R)

⇤
=
@G1

@✓s ·
@G2

@J

s �
@G1

@J

s ·
@G2

@✓s , (47)

so that only derivatives w.r.t. the static coordinates appear. Let us
finally introduce the rescaled time ⌧ as

⌧ = (2⇡)d�k"t , (48)

so that equation (46) becomes

@F
@⌧
+
⇥
F,�+�a

⇤
+

1
N

Z
dR2
⇥C(R1,R2),U12

⇤
(1) = 0 . (49)

One may use a similar angle-averaging procedure for the second
equation of the BBGKY hierarchy. Indeed, multiplying equa-
tion (38) by

R
d✓d

1/(2⇡)
d�kd✓d

2/(2⇡)
d�k, relying on the develop-

ments from equations (40) and (45), and keeping only terms of
order ", equation (38) can finally be rewriten as

1
2
@C
@⌧
+
⇥C(R1,R2),�(R1)+�a(R1)

⇤
(1)+

⇥
F(R1)F(R2),U12

⇤
(1)

(2⇡)d�k

+

Z
dR3 C(R2,R3)

⇥
F(R1),U13

⇤
(1)+(1$2) = 0 . (50)

Equations (49) and (50) are the main result of this section. They
describe the coupled evolutions of the system’s averaged DF, F
and 2�body correlation C. At this stage, one could investigate at
least four di↵erent dynamical regimes of evolution for the system:

I Considering equation (49), the Keplerian rings could
initially be far from a quasi-stationary equilibrium, so that⇥
F,�+�a

⇤
,0. One then expects that this out-of-equilibrium

system will undergo a phase of violent relaxation (Lynden-
Bell 1967), allowing it to rapidly reach a stationary
equilibrium. We do not investigate this process here, while
still relying on the assumption that the collisionless violent
relaxation of the rings’ DF can be su�ciently e�cient for the
system to briefly reach a quasi-stationary stable state, which
will then be followed by a much slower secular evolution,
either collisionless or collisional.

II For a given DF of stationary rings, one could also inves-
tigate the possible existence of collisionless dynamical
instabilities associated with the collisionless part of the
evolution equation (49), namely @F/@⌧+

⇥
F,�+�a

⇤
=0.

Such instabilities are not considered in the present paper,
and we will assume, as will be emphasised in the upcoming

derivations, that throughout its evolution the system always
remains dynamically stable w.r.t. the collisionless dynamics.
See, e.g., Tremaine (2005); Polyachenko et al. (2007) for
examples of stability investigations in this context.

III Once it is assumed that the system has reached a quasi-
stationary stable state, one can study the secular evolution of
this system along quasi-stationary equilibria. Such a long-
term evolution can first be induced by the presence of external
stochastic perturbations encompassed by the potential �a. To
capture such a secular collisionless evolution, one should
neglect contributions from the collisional term in 1/N in
equation (49), and look for the long-term e↵ects of stochastic
perturbations. The formalism appropriate for such a secu-
lar collisionless stochastic forcing is presented in Appendix B.

IV During its secular evolution along quasi-stationary equilibria,
the dynamics of an isolated system can also be driven by
finite�N fluctuations. This amounts to neglecting the e↵ects
due to any external stochastic perturbations, and consider
the contributions associated with the collisional term in 1/N
in equation (49). This requires to solve simultaneously the
system of two coupled evolution equations (49) and (50).
This approach is presented in section 5, where the analog
of the (bare) Landau equation and (dressed) Balescu-Lenard
equation are derived in the context of degenerate dynamical
systems, such as galactic nuclei. As will be emphasised later
on, these di↵usion equations, sourced by finite�N fluctuations
capture the known mechanism of resonant relaxation (Rauch
& Tremaine 1996) relevant for galactic nuclei.

Regarding item II, we expect that, depending on the relative
mass of the considered cluster, there is a regime where orbital
precession is significant, but the self-gravity of the rings is not
strong enough to induce a collisionless instability. In this regime,
accounting for the polarisation of the orbits becomes important
in item III and IV. This motivates the rest of the paper.

john will write ref to Touma Shridar+ beginning of eccentric
disc

5. The degenerate Balescu-Lenard equation

Let us now present how to obtain the closed kinetic equations,
the degenerate Balescu-Lenard and Landau equations, when con-
sidering the 1/N collisional contribution present in the evolution
equation (49). It will be assumed that the system is isolated so
that it undergoes no external perturbations. This amounts to claim-
ing in equation (3) that �ext and the associated fictive force �fic

ext
have no stochastic component, even though it can still possess a
quasi-stationary component. The aim is to obtain a closed kinetic
equation involving F only. To do so, we rely on the adiabatic
approximation (or Bogoliubov’s ansatz) that the system secularly
relaxes through a series of collisionless equilibria. In this context,
collisionless equilibria are stationary (and stable) steady states of
the collisionless advection component of equation (49). There-
fore, it is assumed that throughout the secular evolution, one has

8⌧ , ⇥F,�+�a
⇤
= 0 . (51)

As already underlined, it is expected that such collisionless equi-
libria are rapidly reached by the system (on a few Tsec), through
an out-of-equilibrium mechanism related to violent relaxation. In
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on, these di↵usion equations, sourced by finite�N fluctuations
capture the known mechanism of resonant relaxation (Rauch
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Regarding item II, we expect that, depending on the relative
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accounting for the polarisation of the orbits becomes important
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the degenerate Balescu-Lenard and Landau equations, when con-
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have no stochastic component, even though it can still possess a
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equation involving F only. To do so, we rely on the adiabatic
approximation (or Bogoliubov’s ansatz) that the system secularly
relaxes through a series of collisionless equilibria. In this context,
collisionless equilibria are stationary (and stable) steady states of
the collisionless advection component of equation (49). There-
fore, it is assumed that throughout the secular evolution, one has
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As already underlined, it is expected that such collisionless equi-
libria are rapidly reached by the system (on a few Tsec), through
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where ✓s and J

s respectively stand for the static angles and ac-
tions, while ✓d and J

d stand for the dynamical angles and actions.
Finally, we introduced R as the vector of all the conserved quan-
tities (for a Keplerian potential, this corresponds to a Keplerian
ring). For a degenerate potential, the static angles are therefore
those for which the associated intrinsic frequencies are equal to
0, while these frequencies are non-zero for the dynamical an-
gles (these are often called fast angles). Let us finally define the
degenerate angle-average w.r.t. the dynamical (“fast”) angles as

F(J, ✓s) =
Z

d✓d

(2⇡)d�k F(J, ✓s, ✓d) . (31)

Let us now use these various properties to rewrite equations (20)
and (21) within the angle-action coordinates appropriate for the
Keplerian motion due to the central BH. Within these coordinates,
the Keplerian advection term takes the form

u1 ·
@

@x1
+F10 ·

@

@u1
= ⌦Kep ·

@

@✓
. (32)

A nice property of the average from equation (31), is that the
collisionless advection term from equation (32) then naturally
vanishes, so that one has

⌦Kep ·
@F
@✓
=

Z
d✓k+1

2⇡
...

d✓d
2⇡

dX

i=k+1

⌦i(J)· @F
@✓i
= 0 . (33)

Finally, the mapping (x, u) 7! (✓, J) preserves the infinitesimal
volumes so that d�=dxdu=d✓dJ. In addition, it also preserves
Poisson brackets, so that for two functions G1(x, u), and G2(x, u),
one has
⇥
G1,G2

⇤
=
@G1

@x
·@G2

@u
�@G1

@u
·@G2

@x
=
@G1

@✓
·@G2

@J

�@G1

@J

·@G2

@✓
. (34)

In order to shorten the notations, let us now introduce the rescaled
self-consistent potential � as

�(x1) =
Z

d�2 U12 F(�2) ; � @�
@x1
=

Z
d�2F12 F(�2) . (35)

One can now rewrite equation (20) within these angle-action
coordinates and it takes the form
@F
@t
+⌦1

Kep·
@F
@✓1
+"
⇥
F,�+�a

⇤
+
"

N

Z
d�2
⇥C(�1,�2),U12

⇤
(1) = 0 , (36)

where we wrote ⌦1
Kep=⌦Kep(J1), and introduced the notation

⇥
G1(�1,�2),G2(�1,�2)

⇤
(1) =

@G1

@✓1
· @G2

@J1
� @G1

@J1
· @G2

@✓1
, (37)

so that it corresponds to the Poisson bracket w.r.t. the variables 1.
Similarly, one can straightforwardly rewrite equation (21) as

1
2
@C
@t
+⌦1

Kep ·
@C
@✓1
+"
⇥C(�1,�2),�+�a

⇤
(1)+"

⇥
F(�1)F(�2),U12

⇤
(1)

+"

Z
d�3 C(�2,�3)

⇥
F(�1),U13

⇤
(1)+(1$2) = 0 . (38)

The rewriting from equation (36) is particularly enlightening,
since one can easily identify here the three relevant timescales of
the problem. These are: i) the dynamical timescale TKep=1/⌦Kep
associated with the Keplerian advection term ⌦Kep ·@F/@✓, ii) the
secular collisionless timescale of evolution Tsec="�1TKep associ-
ated with the potential contributions "[�+�a], and finally iii) the
collisional timescale of relaxation Trelax=NTsec, associated with
the last term of equation (36).

4. Averaging the evolution equations

Starting from equations (36) and (38), let us carry out an average
over the degenerate angles as defined in equation (31). Recall
that the main virtue of such an averaging is to naturally cancel
out any contributions associated with the Keplerian advection
term, as observed in equation (33). Starting from equation (36)
and multiplying it with

R
d✓d/(2⇡)d�k, equation (36) immediately

becomes

@F
@t
+"
⇥
F,�+�a

⇤
+
"

N

Z
d�2
⇥C(�1,�2),U12

⇤
(1) = 0 . (39)

In order to estimate the average of the two crossed terms in
equation (39), let us assume that the DF of the system can be
expanded as

F = F+" f with
(

f ⇠O(1) ,
f = 0 .

(40)

This ansatz is the crucial assumption of the present derivation.
Indeed, the BH’s domination on the dynamics strongly limits the
e�ciency of violent relaxation or phase mixing to allow for a
rapid dissolution of any ✓d�dependence. Hence it is somewhat
arbitrarily assumed here that this ansatz was reached because
in its initial state, the system was already phase mixed. In the
first Poisson bracket of equation (39), one should keep in mind
that the self-consistent potential �, introduced in equation (35),
should be seen as a functional of F. As a consequence, one may
rewrite the associated averaged Poisson bracket as

"
⇥
F,�(F)+�a

⇤
= "
⇥
F+" f ,�(F+" f )+�a

⇤

= "
⇥
F,�(F)+�a

⇤
+O("2)

= (2⇡)d�k"
⇥
F,�(F)+�a

⇤
+O("2) , (41)

where the averaged self-consistent potential � was introduced as

�(R1) =
Z

dR2 F(R2) U12(R1,R2) . (42)

In equation (42), for clarity, the notation was shortened for the
self-consistent potential as �=�(F). The (doubly) averaged in-
teraction potential U12 was defined as

U12(R1,R2) =
Z d✓d

1

(2⇡)d�k

d✓d
2

(2⇡)d�k U12(�1,�2) . (43)

The angle-averaged potential �a was also introduced as

�a(R) =
1

(2⇡)d�k

Z
d✓d

(2⇡)d�k �a(�) , (44)

where one should pay attention to the prefactor 1/(2⇡)d�k, which
was introduced for convenience. As emphasised in equation (41),
one should note that at order ", the self-consistent potential has
to be computed while only considering the averaged system’s DF
F. This also holds for the fictive potential �fic from equation (3),
which encompasses the inertial force due to the stars. To deal
with the third term of equation (39), the same double average as
introduced in equation (43) should be performed on C. Similarly
to equation (40), it is assumed that the 2�body correlation can be
developed as

C = C+"c with
(

c⇠O(1) ,
c = 0 .

(45)
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The next step of the calculation involves rewriting equations (20)
and (21) within appropriate angle-action coordinates allowing us
to capture in a simple manner the dominant mean Keplerian mo-
tion due to the central BH. However, when considering Keplerian
potentials, one has to deal with additional dynamical degeneracies
between the orbital frequencies, which should be handled with
care, as we will now detail.

3. Degenerate angle-action coordinates

In equations (20) and (21), one can note the presence of an ad-
vection term u1 ·@/@x1+F10 ·@/@u1 associated with the Keplerian
motion driven by the central black hole. The next step of the
derivation is to introduce the appropriate angle-action coordi-
nates (Goldstein 1950; Born 1960; Binney & Tremaine 2008) to
simplify this integrable Keplerian motion. Let us therefore remap
the physical coordinates (x, u) to the Keplerian angle-action ones
(✓, J). Along the unperturbed Keplerian orbits, the actions J are
conserved, while the angles ✓ are 2⇡�periodic evolving with the
frequency ⌦Kep defined as

⌦Kep = ✓̇ =
@HKep

@J

, (22)

where HKep is the Hamiltonian associated with the Keplerian
motion due to the black hole. Various angle-action coordinates
may be used to describe a Keplerian motion. In 3D, the usual
angles and actions (Binney & Tremaine 2008) are given by

(J, ✓) = (J1, J2, J3, ✓1, ✓2, ✓3) = (Jr, L, Lz, ✓1, ✓2, ✓3) , (23)

where Jr is the radial action, L the magnitude of the angular
momentum, and Lz its projection along the z�axis. A property
of Keplerian systems is then that HKep(J)=HKep(Jr+L), so that
one has ⌦1=⌦2=⌦Kep, and ⌦3=0. Another possible choice of
angle-action coordinates in 3D is given by the Delaunay vari-
ables (Binney & Tremaine 2008) defined as

(J, ✓) = (I, L, Lz, w, g, h) . (24)

In equation (24), (I= Jr+L, L, Lz) are the three actions of the
system, while (w, g, h) are the associated angles. Here, w stands
for the orbital phase or mean anomaly, g for the angle from the
ascending node to the periapse, and h for the longitude of the
ascending node. With these variables, HKep=HKep(I), so that the
angles g and h are also integrals of motion, while the angle w
advances at the frequency ẇ=⌦Kep=@HKep/@I. As one can note,
the Keplerian frequencies always satisfy some resonance condi-
tions, making the Keplerian potential dynamically degenerate.
This can have some crucial consequences on the long-term be-
haviour of such systems. Let us now sketch how such systems
should generically be dealt with. In order to clarify the upcom-
ing discussions, we denote as d the dimension of the considered
physical space, e.g., d=2 for a razor-thin disc. In this space, we
consider an integrable potential  and an associated angle-action
mapping (x, u)! (✓, J). A potential is said to be degenerate if
there exists n2Zd such that

8J , n·⌦(J) = 0 . (25)

Here, it is important to note that the vector n should be indepen-
dent of J, for the degeneracy to be global. Of course, a given
potential may have more than one such degeneracy. The degree
of degeneracy of a potential is denoted as k, i.e. the number of
linearly independent vectors n satisfying equation (25). Let us
illustrate these notions with the example of the 3D Keplerian

angle-action coordinates from equations (23) and (24). With the
usual angle-action coordinates from equation (23), the frequen-
cies and the degeneracy vectors are given by

⌦3D= (⌦Kep,⌦Kep, 0) ) n1= (1,�1, 0) and n2= (0, 0, 1) , (26)

so that the degree of degeneracy of this potential is given by k=2.
Using the Delaunay angle-action coordinates from equation (24),
one can similarly write

⌦Del= (⌦Kep, 0, 0) ) n1= (0, 1, 0) and n2= (0, 0, 1) , (27)

so that k=2. One should note that the degree of degeneracy of
the potential k is independent of the chosen angle-action coordi-
nates. Equation (27) also illustrates why in the Keplerian case,
the Delaunay variables from equation (24) appear as a simpler
choice than the usual angle-action coordinates from equation (23),
because of their simpler degeneracy vectors.

Finally, notice that for a given degenerate potential, a remap-
ping of the angle-action coordinates (✓, J)! (✓0, J 0) can always
be performed, such that in these new coordinates the degeneracy
vectors become simpler. This would for example correspond to
going from the usual angle-action coordinates from equation (23)
to the Delaunay ones from equation (24). Indeed, let us assume
that in our initial angle-action coordinates (✓, J), we have at our
disposal k degeneracy vectors n1, ... , nk. The aim is to change co-
ordinates (✓, J)! (✓0, J 0), so that in these new coordinates the k
new degeneracy vectors take the simple form n

0
i =ei, where ei are

the natural basis elements of Zd. Relying on the formalism of gen-
erating functions (Binney & Tremaine 2008), this only requires
a straightforward linear transformation between coordinates. In-
deed, as the vectors ni are assumed to be linearly independent,
we can complete this family with d�k vectors nk+1, ..., nd 2Zd to
have a basis over Qd. Following Morbidelli (2002), let us define
the transformation matrixA of determinant 1 as

A =
0
BBBBBB@

n1
...
nd

1
CCCCCCA /

��������

n1
...
nd

��������
. (28)

The new angle-action coordinates (✓0, J 0) are then defined as

✓0 =A·✓ ; J

0 = (At)�1 ·J . (29)

One can check that (✓0, J 0) are indeed new angle-action coordi-
nates, for which the actions J

0 are conserved, while the angles ✓0
evolve within [0, 2⇡]. Notice that within these new coordinates,
the k degeneracy vectors are immediately given by n

0
i =ei, so that

the intrinsic frequencies satisfy ⌦0i =0, for 1 ik. Hence, once
one has identified degeneracy vectors for some given angle-action
coordinates (✓, J), it is straightforward thanks to the linear trans-
formation from equation (29) to remap these coordinates to new
angle-action ones (✓0, J 0), within which the degeneracies of the
potential get simpler.

As a consequence, when considering a degenerate potential
such as the Keplerian one, one will always use simpler angle-
action coordinates, still denoted as (✓, J), for which the k de-
generacy vectors are given by ni=ei, i.e. for which the intrinsic
frequencies satisfy ⌦i=0, for 1 ik. Within these coordinates,
let us finally introduce the notations

✓s = (✓1, ..., ✓k) ; ✓d = (✓k+1, ...✓d) ,

J

s = (J1, ..., Jk) ; J

d = (Jk+1, ..., Jd) ,
R = (J, ✓s) , (30)
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Fig. 2: (To do.)
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Fig. 3: (To do.)

Conversely, the contribution from the fictive forces read

⌦s
fic = . (110)

while contribution from the system’s self-consistent potential
obey

⌦s
self = . (111)

The scalings with the BH’s mass in equations (109)-(111) imply
that the system undergoes anomalous di↵usion to be proven!
when orbits reach a critical set of actions. This allows us to
identify a so-called “barrier” in action space (Bar-Or & Alexander
2016), which when crossed changes the rate at which the orbits
di↵use in action space. Given that Jd is adiabatically invariant, it
follows that the di↵usion will occur at fixed I= Jr+L so that as the
stars move in they increase their eccentricity (given equation (83)).

- Discuss effect of spin of BH in tempering result;
- Discuss mass/AM flux at boundary
- Attempt to demonstrate direction of diffusion in mass and AM;
cf accretion disk

- Link with Langevin equation; freeze diffusion/drift as time de-
pendent bath?

7. Conclusion

Specialising the recently published kinetic theory (Heyvaerts
2010; Chavanis 2012) of self-gravitating systems of N particles
to quasi-Keplerian systems partially dominated by a massive cen-
tral component, we derived the equation governing their secular
evolution to leading order in 1/N. The self-consistent dressed
equations (equation (56) and its multi-component counterpart,
equation (67)) presented in the present paper account for their
dynamical degeneracy, i.e. the fact that in the Keplerian limit,
the particles’ orbit are closed ellipses, so that the azimuthal and
radial oscillation frequencies are equal. Because purely Keplerian
orbits do not precess, the dynamical evolution of such degenerate
systems may significantly di↵er from that of fully self-gravitating
discs.

The quasi-Keplerian Balescu-Lenard equation is quadratic
in the phase averaged distribution function and describes i) the
self-gravity of the orbiting particles, ii) the discreteness of the
cluster, iii) the resonances between such orbits, iv) a full spec-
trum of masses, via equation (67), and v) possible post-Newtonian
corrections, including relativistic precession induced by the ro-
tation of the central black hole, if present. These last e↵ects are
encoded in the frequency shifts occurring in the resonance condi-
tion from the di↵usion and drift coe�cients. It is the quasi-linear
self-consistent master equation quantifying the e↵ect of resonant
relaxation. Hence it provides a very rich framework to describe
the evolution of galactic centers for cosmic times, or the secular
evolution of debris discs — which is an interesting venue in the
context of planet formation.

The main ingredient in this derivation involved phase averag-
ing the first two equations of the BBGKY hierarchy over the fast
angles associated with the orbital motion of the bodies on their
Keplerian orbits. In order to derive equations (56) and (67), we
assumed that the (spherical or coplanar) cluster was dynamically
relaxed at every stage of its secular evolution. As the equations
are averaged over the Keplerian fast angles, the corresponding
actions are adiabatically preserved.2 Hence a limitation of the
present formalism is that it is restricted to non-chaotic systems,
e.g., when symmetry warrants integrability. It is speculated that
as long as the regular islands dominate the structure of phase
space, equation (56) will remain the master equation, with ac-
tions constructed perturbatively (via, e.g., Binney & McMillan
2016).

Following point III of Section 4, Appendix B investigates the
secular evolution of the quasi-Keplerian system when the source
of fluctuation is external to the cluster and driven by potential
fluctuations, e.g., from the near neighbourhood of the galactic
center. Equation (B.31) was also presented somewhat di↵erently
via the so called ⌘�formalism in Bar-Or & Alexander (2014)
in the limit of zero self-gravity. In contrast, equation (56) does
not need to assume some model for the structure of the noise,
as the discreteness of the system is described self-consistently.
Very recently, Sridhar & Touma (2016b,a) presented a derivation
of equations (49) and (50) following a slightly di↵erent route,
inspired by Gilbert (1970) (which itself extended the work of
Balescu 1960; Lenard 1960, from plasma physics). Eventually,
one could evolve jointly the BH and its environment, which would
2 Because of this phase average, the Keplerian Balescu-Lenard equation
cannot capture mean motion resonances.
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addition, the symmetry of the system is expected to be such that
the collisionless equilibria are of the form

F(J, ✓s) = F(J) , (52)

so that during its secular evolution, the system’s averaged DF
does not have any static angle dependences. Notice however that
despite the hypothesis from equation (52), the averaged autocor-
relation C evolving according to equation (50) still depends on
the two static angles ✓s

1 and ✓s
2. We also assume that the symmetry

of the system is such that

F = F(J) ) � = �(J) and �a = �a(J) . (53)

As we will see later on in sections 6.1 and 6.3, such symmetry is
satisfied, e.g., for razor-thin axisymmetric discs and 3D spherical
clusters (see Appendix A for the expression of the relativistic
precession frequencies). Thanks to equations (52) and (53), the
equilibrium condition from equation (51) is immediately satisfied.
Let us finally introduce the precession frequencies ⌦s as

⌦s =
@[�+�a]
@J

s . (54)

These frequencies correspond to the precession frequencies of the
static angles due to the joint contributions from the system’s self-
consistent potential, the relativistic corrections, and any quasi-
stationary additional external component. Notice that they do not
involve the Keplerian frequencies from equation (22) anymore,
hence are not degenerate a priori. With them, one can for example
easily rewrite the collisionless precession advection term from
equation (50) as

⇥C(R1,R2),�(R1)+�a(R1)
⇤
(1) = ⌦

s
1 ·
@C(R1,R2)

@✓s
1

. (55)

where the precession frequencies ⌦s
1 associated with the static

angles ✓s come into play.
The two coupled evolution equations (49) and (50) are now

quasi-identical to the traditional coupled BBGKY equations con-
sidered in Heyvaerts (2010) to derive the inhomogeneous Balescu-
Lenard equation for non-degenerate inhomogeneous systems. To
derive the closed kinetic equation satisfied by F, various methods
have been proposed in the literature. Heyvaerts (2010) proposed
a direct resolution of the BBGKY equations, based on the Bogoli-
ubov’s ansatz. Chavanis (2012) considered a rewriting of equa-
tions (49) and (50) using the Klimontovich equation (Klimon-
tovich 1967), and relied on a quasi-linear approximation. Finally,
in the limit where collective e↵ects are not accounted for, Fouvry
et al. (2016a) recently presented a new derivation of the relevant
kinetic equation based on functional integrals.

In the present paper, the derivation proposed by Heyvaerts
(2010) will be followed, by directly solving the two first averaged
BBGKY equations (49) and (50). The basic idea of this approach
is to solve equation (50), so as to obtain the system’s autocorre-
lation C as a functional of the system’s 1�body DF F. Injecting
this expression in equation (49), yields finally a closed kinetic
equation quadratic in F. The detailed calculations required to
derive the inhomogeneous degenerate Balescu-Lenard equation
are presented in Appendix C.

5.1. The one component BL equation

In its explicitly conservative form, the degenerate Balescu-Lenard
equation reads

@F
@⌧
=
⇡(2⇡)2k�d

N
@

@J

s
1
·
 X

m

s
1,m

s
2

m

s
1

Z
dJ2

�D(m

s
1 ·⌦s

1�m

s
2 ·⌦s

2)
|D

m

s
1,m

s
2
(J1, J2,ms

1 ·⌦s
1)|2

⇥
✓
m

s
1 ·

@

@J

s
1
�m

s
2 ·

@

@J

s
2

◆
F(J1) F(J2)

�
. (56)

In equation (56), recall that d is the dimension of the physical
space, and k the number of degeneracy of the underlying zeroth-
order potential. The r.h.s. of equation (56) is the degenerate inho-
mogeneous Balescu-Lenard collision operator, which describes
the secular di↵usion induced by dressed finite�N fluctuations.
It describes the distortion of the Keplerian orbits as their action
di↵use thanks to their self-interaction. As expected, it vanishes in
the large N limit. Notice the presence of the resonance condition
operating on their precession frequencies encapsulated by the
Dirac delta �D(m

s
1 ·⌦s

1�m

s
2 ·⌦s

2) (where the shortened notation
⌦s

i =⌦
s(Ji) was used), where m

s
1, m

s
2 2Zk are integer vectors. In

fact, equation (56) shows that the di↵usion occurs along preferred
discrete directions labeled by the resonances m

s
1. The integration

over the dummy variable J2 scans action space for regions where
the resonance condition is satisfied, and such resonant (possibly
distant) encounters between orbits are the drivers of the colli-
sional evolution. The resonance condition is illustrated in fig-
ure 1. Notice that equation (56) involves the antisymmetric oper-
ator, m

s
1 ·@/@J

s
1�m

s
2 ·@/@J

s
2, which when applied to F(J1) F(J2)

“weighs” the relative number of pairwise resonant orbits caught in
this resonant configuration. In this equation, the dressed suscep-
tibility coe�cients were also introduced as 1/D

m

s
1,m

s
2
(J1, J2,!),

so that each distribution entering the r.h.s. of equation (56) is
boosted by this susceptibility. In order to solve Poisson’s non-
local equation relating the DF’s perturbations and the induced
potential perturbations, Kalnajs’ matrix method (Kalnajs 1976)
was used to implement a biorthonormal basis of potentials and
densities  (p) and ⇢(p) such that

 (p) =

Z
dx

0 ⇢(p)(x

0) U(|x�x

0|) ;
Z

dx (p)(x) ⇢(q)⇤(x) = ��q
p . (57)

where U stands for the rescaled interaction potential from equa-
tion (16). The dressed susceptibility coe�cients appearing in
equation (56) are then given by

1
D

m

s
1,m

s
2
(J1, J2,!)

=
X

p,q

 (p)
m

s
1
(J1)
⇥
I�bM(!)

⇤�1
pq  

(q)⇤
m

s
2

(J2) , (58)

where I is the identity matrix, and bM is the system’s averaged
response matrix defined as

bMpq(!) = (2⇡)k
X

m

s

Z
dJ

m

s ·@F/@J

s

!�m

s ·⌦s  
(p)⇤
m

s (J) 
(q)
m

s (J) . (59)

In equation (59), the averaged basis elements  
(p)

were defined
following equation (31). Their Fourier transform w.r.t. the static
angles was also defined using the convention

 
(p)

(R)=
X

m

s

 
(p)
m

s(J) eims·✓s
;  

(p)
m

s(J)=
Z

d✓s

(2⇡)k e�ims·✓s
 

(p)
(R) . (60)

The susceptibility coe�cients from equation (58) quantify the
polarisation cloud around each orbit which triggers sequences of
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relying on the relation Lz=L cos(i). Hence the Hamiltonian
H1.5PN

rel which accounts for the rotation of the BH reads

H1.5PN
rel (I, L, Lz) =

2s(GM•)5

c3
Lz

I3L3 . (A.6)

Paying a careful attention to the normalisation prefactors used in
equations (2), (17), and (44), one finally gets the expression of
the averaged 1PN and 1.5PN relativistic corrections �a appearing
in equations (49) and (50). These read

�a(I, L, Lz) =
1

(2⇡)d�k
M•
Mtot


H1PN

rel (I, L)+H1.5PN
rel (I, L, Lz)

�
. (A.7)

From this potential correction, following equation (54), one can
immediately compute the associated precession frequencies ⌦s

w.r.t. the static angles ⌦s. They read

⌦s
rel=

@�a

@J

s =
M•

(2⇡)d�k
(GM•)4

Mtotc2
@

@J

s


� 3

I3L
+

2GM•
c

sLz

I3L3

�
. (A.8)

Note finally that gravitational waves emissions are not considered
here.

Appendix B: The degenerate collisionless equation

In this Appendix, let us consider the situation where the long-term
evolution of the system is driven by an external forcing rather than
by finite e↵ects. In this collisionless approach, any contributions
from the collisional term in 1/N appearing in equation (49) will
be neglected, and it will be assumed that the system undergoes
external stochastic perturbations. In the context of non-degenerate
galactic systems, such long-term evolutions were studied in Bin-
ney & Lacey (1988); Weinberg (2001); Pichon & Aubert (2006);
Fouvry et al. (2015c). See also Bar-Or & Alexander (2014) for
similar considerations on the role played by correlated back-
ground fluctuations on the secular evolution of galactic nuclei, in
the limit where the self-gravitating dressing is not accounted for.

In our present context, the system’s dynamics is given by
the collisionless equation (49), which when truncated to neglect
collisional e↵ects reads

@F
@⌧
+
⇥
F,�+�a

⇤
= 0 . (B.1)

In order to study the evolution of the DF and potential fluctuations,
let us assume that

F(J, ✓s, ⌧) = F0(J, ⌧)+ f (J, ✓s, ⌧) ,
⇥
�+�a

⇤
(J, ✓s, ⌧) =  0(J, ⌧)+ (J, ✓s, ⌧) , (B.2)

where

f⌧F0 ;
Z

d✓s

(2⇡)k f = 0 ;  ⌧ 0 ;
Z

d✓s

(2⇡)k  = 0 . (B.3)

In the decomposition from equation (B.2), we introduce two types
of potentials. Here,  0 encompasses all the quasi-stationary po-
tential components and depends only on the actions. As assumed
in equation (53), we assume that the symmetry of the system is
such that the self-consistent potential satisfies �(F0)=�(F0)(J),
so that it contributes only to  0. The quasi-stationary potential
 0 can then be written as  0=�(F0)+�0

a(J), where �0
a encom-

passes all the quasi-stationary external potentials, e.g., the rela-
tivistic corrections (see equation (3)). In the decomposition from
equation (B.2), we also introduced  , which encompasses all the

remaining fluctuating perturbations and depends on the full ring
coordinates R= (J, ✓s). This potential can be rewritten as

 =  ext +  self , (B.4)

where  ext corresponds to the external stochastic perturbations,
while  self =�( f ) is associated with the system’s self-gravitating
self-response (see, e.g., Weinberg 2001), and is defined following
the convention from equation (42). This additional perturbation
is essential to capture the system’s gravitational susceptibility, i.e.
its ability to amplify perturbations. Injecting the decompositions
from equations (B.2) into the evolution equation (B.1) yields

@
⇥
F0+ f

⇤

@⌧
+
⇥
F0+ f , 0+ 

⇤
= 0 . (B.5)

Multiplying equation (B.5) by
R

d✓s/(2⇡)k, given equation (B.3),
one gets

@F0

@⌧
= �
Z

d✓s

(2⇡)k
⇥
f , 
⇤
=

@

@J

s ·
Z d✓s

(2⇡)k f
@ 

@✓s

�
, (B.6)

relying on the definition of the reduced Poisson bracket from
equation (47). Equation (B.6) shows that @F0/@⌧ is a second order
term as it is the product of two fluctuations. Keeping only first
order terms in equation (B.5) yields a second evolution equation
of the form

@ f
@⌧
+⌦s · @ f

@✓s �
@F0

@J

s ·
@ 

@✓s = 0 , (B.7)

where, as in equation (54), the quasi-stationary precession fre-
quencies ⌦s are defined as

⌦s =
@ 0

@J

s . (B.8)

The two coupled evolution equations (B.6) and (B.7) should be
seen as the direct collisionless analogs of equations (49) and (50)
from the collisional framework. They are indeed the two essential
coupled evolution equations from which one may obtain the sec-
ular degenerate collisionless di↵usion equation. Equation (B.7)
describes the evolution of the perturbation f on the precession
timescale 1/⌦s, while equation (B.6) describes the long-term
evolution of the quasi-stationary DF F0 on secular timescales.
In order to derive a closed evolution equation for F0, we will
first solve equation (B.7) to obtain an estimation of f and  ,
and describe the dynamical amplification of the perturbations.
Its solution, when injected in equation (B.6), will then allow for
the description of the secular evolution of the system’s mean
quasi-stationary DF F0.

Relying on the same convention as in equation (60), let us
take the Fourier transform of equation (B.7) w.r.t. the angles ✓s

to get

@ f
m

s

@⌧
+ ims ·⌦s f

m

s � ims · @F0

@J

s  m

s = 0 . (B.9)

Following the path of the collisional approach, let us assume
timescale decoupling (Bogoliubov’s ansatz). The fluctuations
(e.g., f and  ) are expected to evolve rapidly on dynamical
timescales, while the mean quasi-stationary quantities (e.g., F0
and  0) only evolve on secular timescales, i.e. over many dynam-
ical times. Consequently, in equation (B.9), which describes the
evolution of fluctuations, we may push the secular time to infinity,
and assume that @F0/@J=cst. Dropping transients, bringing the
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