The particle-without-particle approach to the self-force problem

Marius Oltean1,2,3,4,5, Carlos F. Sopuerta1 and Alessandro D.A.M. Spallicci3,4,5

1Institut de Ciències de l’Espai (IEEC-CSIC), Campus Universitat Autònoma de Barcelona, Spain
2Departament de Física, Facultat de Ciències, Universitat Autònoma de Barcelona, Spain
3Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, CNRS, Orléans, France
4Observatoire des Sciences de l’Univers en région Centre, Université d’Orléans, France
5Pôle de Physique, Collegium Sciences et Techniques, Université d’Orléans, France

Paris, France — 27 June 2017
Introduction
Introduction

\[M_\bullet \sim 10^{5-7} M_\odot \]

\[m_\ast \sim 1 - 50 M_\odot \]

\[\Rightarrow \mu = \frac{m_\ast}{M_\bullet} \sim 10^{-4} - 10^{-6} \]
Introduction

\[M_\bullet \sim 10^{5-7} M_\odot \]

\[m_* \sim 1 - 50 M_\odot \]

\[\Rightarrow \mu = \frac{m_*}{M_\bullet} \sim 10^{-4} - 10^{-6} \]

- The detection of GWs from EMRIs will rely crucially on an accurate computation of the gravitational self-force: the most popular approach is to model \(m_* \) as a point source (delta function) creating a backreaction in the geometry of \(M_\bullet \).

[arXiv:1305.5720]
The detection of GWs from EMRIs will rely crucially on an accurate computation of the gravitational self-force: the most popular approach is to model m_* as a point source (delta function) creating a backreaction in the geometry of \dot{M}_\bullet.

The theoretical formalism to compute the self-force has been largely established, e.g. [S. Gralla and R. Wald, CQG 25, 205009 (2008)], but its mathematical implementation is still under development; we use the Particle-without-Particle (PwP) method.
Introduction

\[M_\bullet \sim 10^{5-7} M_\odot \]

\[m_\ast \sim 1 - 50 M_\odot \]

\[\Rightarrow \mu = \frac{m_\ast}{M_\bullet} \sim 10^{-4} - 10^{-6} \]

- The detection of GWs from EMRI will rely crucially on an accurate computation of the gravitational self-force: the most popular approach is to model \(m_\ast \) as a point source (delta function) creating a backreaction in the geometry of \(M_\bullet \).

- The theoretical formalism to compute the self-force has been largely established, e.g. [S. Gralla and R. Wald, CQG 25, 205009 (2008)], but its mathematical implementation is still under development; we use the Particle-without-Particle (PwP) method.

- A helpful testbed for the gravitational self-force is the scalar self-force—we tackle this using the PwP method in the frequency domain.
Scalar self-force: a simplified EMRI model
Scalar self-force: a simplified EMRI model

- **Setup:** m_* is a *charged scalar particle* (with charge q associated to a scalar field Φ) orbiting a *non-rotating black hole* (of fixed—Schwarzschild—geometry, (M, g, ∇)) along a geodesic γ with worldline $z(\tau)$ and 4-velocity $u = \dot{z}$. The EOMs are:

\[t \quad (M, g, \nabla) \quad \gamma \quad u \quad z \quad x^i \quad m_*, q \]
Scalar self-force: a simplified EMRI model

- **Setup**: \(m_\ast \) is a *charged scalar particle* (with charge \(q \) associated to a scalar field \(\Phi \)) orbiting a *non-rotating black hole* (of fixed—Schwarzschild—geometry, \((M, g, \nabla)\)) along a geodesic \(\gamma \) with worldline \(z(\tau) \) and 4-velocity \(u = \dot{z} \). The EOMs are:

\[
\nabla^2 \Phi = -4\pi q \int_{\gamma} d\tau \, \delta(x - z(\tau)),
\]

\[
u \cdot \nabla (m_\ast u) = \mathcal{F} = q \left(\nabla \Phi \right)_{|_{\gamma}}.
\]

[T. Quinn, PRD 62, 064029 (2000)]
Scalar self-force: a simplified EMRI model

- **Setup**: m_* is a **charged scalar particle** (with charge q associated to a scalar field Φ) orbiting a **non-rotating black hole** (of fixed—Schwarzschild—geometry, (M, g, ∇)) along a geodesic γ with worldline $z(\tau)$ and 4-velocity $u = \dot{z}$. The EOMs are:

\[
\nabla^2 \Phi = -4\pi q \int_{\gamma} d\tau \, \delta(x - z(\tau)),
\]

\[
u \cdot \nabla (m_* u) = F = q \left(\nabla \Phi \right)|_{\gamma}.
\]

[T. Quinn, PRD 62, 064029 (2000)]

- The field’s spherical harmonic modes $\Phi^{\ell m}(t, r)$ decouple; for $\psi^{\ell m} = r \Phi^{\ell m}$,
Scalar self-force: a simplified EMRI model

- **Setup:** m_* is a **charged scalar particle** (with charge q associated to a scalar field Φ) orbiting a **non-rotating black hole** (of fixed—Schwarzschild—geometry, (M, g, ∇)) along a geodesic γ with worldline $z(\tau)$ and 4-velocity $u = \dot{z}$. The EOMs are:

\[
\nabla^2 \Phi = -4\pi q \int_\gamma d\tau \delta(x - z(\tau)),
\]

\[
u \cdot \nabla (m_\ast u) = \mathcal{F} = q \left(\nabla \Phi \right)_{|\gamma}.
\]

[T. Quinn, PRD 62, 064029 (2000)]

- The field’s spherical harmonic modes $\Phi^{\ell m}(t, r)$ decouple; for $\psi^{\ell m} = r \Phi^{\ell m}$,

\[
(\Box - V_\ell(r)) \psi^{\ell m} = S^{\ell m} \delta(r - r_p(t)),
\]

The particle-without-particle approach to the self-force problem
Scalar self-force: a simplified EMRI model

- **Setup**: m_* is a *charged scalar particle* (with charge q associated to a scalar field Φ) orbiting a *non-rotating black hole* (of fixed—Schwarzschild—geometry, (M, g, ∇)) along a geodesic γ with worldline $z(\tau)$ and 4-velocity $u = \dot{z}$. The EOMs are:

\[
\nabla^2 \Phi = -4\pi q \int_\gamma d\tau \, \delta(x - z(\tau)),
\]

\[
u \cdot \nabla (m_* u) = \mathcal{F} = q (\nabla \Phi)|_\gamma.
\]

[T. Quinn, PRD 62, 064029 (2000)]

- The field’s spherical harmonic modes $\Phi^{\ell m}(t, r)$ decouple; for $\psi^{\ell m} = r \Phi^{\ell m}$,

\[
(\Box - V_\ell(r)) \psi^{\ell m} = S^{\ell m} \delta(r - r_p(t)), \quad \Box = -\partial_t^2 + \partial_{r_*}^2.
\]
Scalar self-force: a simplified EMRI model

- **Setup:** m_* is a **charged scalar particle** (with charge q associated to a scalar field Φ) orbiting a **non-rotating black hole** (of fixed—Schwarzschild—geometry, (M, g, ∇)) along a geodesic γ with worldline $z(\tau)$ and 4-velocity $u = \dot{z}$. The EOMs are:

$$\nabla^2 \Phi = -4\pi q \int_{\gamma} d\tau \delta(x - z(\tau)),
$$

$$u \cdot \nabla(m_* u) = F = q (\nabla \Phi)|_{\gamma}.$$

- The field’s spherical harmonic modes $\Phi^{\ell m}(t, r)$ decouple; for $\psi^{\ell m} = r\Phi^{\ell m}$,

$$(\Box - V_\ell(r)) \psi^{\ell m} = S^{\ell m} \delta(r - r_p(t)), \quad \Box = -\partial_t^2 + \partial_{r_*}^2.$$

[T. Quinn, PRD 62, 064029 (2000)]

The particle-without-particle approach to the self-force problem
Scalar self-force: a simplified EMRI model

- **Setup:** \(m_* \) is a **charged scalar particle** (with charge \(q \) associated to a scalar field \(\Phi \)) orbiting a **non-rotating black hole** (of fixed—Schwarzschild—geometry, \((M, g, \nabla)\)) along a geodesic \(\gamma \) with worldline \(z(\tau) \) and 4-velocity \(u = \dot{z} \). The EOMs are:

\[
\nabla^2 \Phi = -4\pi q \int_\gamma d\tau \delta(x - z(\tau)),
\]
\[
u \cdot \nabla (m_* u) = \mathcal{F} = q \left(\nabla \Phi \right) |_\gamma.
\]

[T. Quinn, PRD 62, 064029 (2000)]

- The field’s spherical harmonic modes \(\Phi^{\ell m}(t, r) \) decouple; for \(\psi^{\ell m} = r \Phi^{\ell m} \),

\[
(- V_\ell(r)) \psi^{\ell m} = \mathcal{S}^{\ell m} \delta(r - r_p(t)), \quad \Box = -\partial_t^2 + \partial_{r_*}^2.
\]

Regge-Wheeler potential

redefined (“tortoise”) radial coordinate

The particle-without-particle approach to the self-force problem
Scalar self-force: a simplified EMRI model

- **Setup**: m_* is a charged scalar particle (with charge q associated to a scalar field Φ) orbiting a non-rotating black hole (of fixed—Schwarzschild—geometry, (M, g, ∇)) along a geodesic γ with worldline $z(\tau)$ and 4-velocity $\mathbf{u} = \dot{z}$. The EOMs are:

\[
\nabla^2 \Phi = -4\pi q \int_{\gamma} d\tau \delta(\mathbf{x} - z(\tau)),
\]
\[
\mathbf{u} \cdot \nabla (m_* \mathbf{u}) = \mathcal{F} = q \left(\nabla \Phi \right)_{\gamma}.
\]

- The field’s spherical harmonic modes $\Phi^{\ell m}(t, r)$ decouple; for $\psi^{\ell m} = r \Phi^{\ell m}$,

\[
(\Box - V_\ell(r)) \psi^{\ell m} = S^{\ell m} \delta(r - r_p(t)),
\]
\[
\Box = -\partial_t^2 + \partial_{r_*}^2.
\]

\[\text{Regge-Wheeler potential}\]
\[\text{particle’s radial location}\]
\[\text{redefined ("tortoise") radial coordinate}\]

[T. Quinn, PRD 62, 064029 (2000)]
Scalar self-force: a simplified EMRI model

- **Setup**: m_* is a *charged scalar particle* (with charge q associated to a scalar field Φ) orbiting a *non-rotating black hole* (of fixed—Schwarzschild—geometry, (M, g, ∇)) along a geodesic γ with worldline $z(\tau)$ and 4-velocity $u = \dot{z}$. The EOMs are:

\[
\nabla^2 \Phi = -4\pi q \int_\gamma d\tau \, \delta(x - z(\tau)),
\]

\[
u \cdot \nabla (m_* u) = F = q \left(\nabla \Phi \right) |_\gamma .
\]

[T. Quinn, PRD 62, 064029 (2000)]

- The field’s spherical harmonic modes $\Phi^\ell m(t, r)$ decouple; for $\psi^\ell m = r \Phi^\ell m$,

\[
(\Box - V_\ell(r)) \psi^\ell m = S^\ell m \delta(r - r_p(t)), \quad \Box = -\frac{\partial^2}{\partial t^2} + \frac{\partial^2}{\partial r_{*}^2}.
\]

| Regge-Wheeler potential | proportional to q, dependent on z | particle’s radial location | redefined (“tortoise”) radial coordinate |

The particle-without-particle approach to the self-force problem
Scalar self-force: a simplified EMRI model

- **Setup:** \(m_\ast \) is a *charged scalar particle* (with charge \(q \) associated to a scalar field \(\Phi \)) orbiting a *non-rotating black hole* (of fixed—Schwarzschild—geometry, \((M, g, \nabla)\)) along a geodesic \(\gamma \) with worldline \(z(\tau) \) and 4-velocity \(u = \dot{z} \). The EOMs are:

\[
\nabla^2 \Phi = -4\pi q \int_\gamma d\tau \delta(x - z(\tau)), \\
u \cdot \nabla(m_\ast u) = F = q \left(\nabla \Phi \right)_{\gamma}.
\]

[T. Quinn, PRD 62, 064029 (2000)]

- The field’s spherical harmonic modes \(\Phi^{lm}(t, r) \) decouple; for \(\psi^{lm} = r\Phi^{lm} \),

\[
(\Box - V_\ell(r)) \psi^{lm} = S^{lm} \delta(r - r_p(t)), \quad \Box = -\partial_t^2 + \partial_{r_\ast}^2.
\]

- Regge-Wheeler potential
- proportional to \(q \), dependent on \(z \)
- particle’s radial location
- redefined (“tortoise”) radial coordinate

- Once the field is solved for, its singular part must be subtracted (via “mode-sum regularization” [L. Barack and A. Ori, PRD 61, 061502 (2000)]).
Scalar self-force: the PwP method
Scalar self-force: the PwP method

- Split the computational domain into two disjoint regions. For any $Q(t, r)$:

$$Q = Q_0 \Theta_p^- + Q_1 \Theta_p^+,$$

$$\Theta_p^\pm = \Theta(\pm (r - r_p)),$$

$$[Q]_p = \lim_{r \to r_p(t)} (Q_1 - Q_0).$$
Scalar self-force: the PwP method

- Split the computational domain into two disjoint regions. For any $Q(t, r)$:

\[
Q = Q_- \Theta^-_p + Q_+ \Theta^+_p, \quad [Q]_p = \lim_{r \to r_p(t)} (Q_+ - Q_-) .
\]

\[
\Theta^\pm_p = \Theta(\pm (r - r_p)) ,
\]

\[
(\Box - V_\ell(r)) \psi^{\ell m} = S^{\ell m} \delta(r - r_p(t))
\]

\[
(\Box - V_\ell(r)) \psi_-^{\ell m} = 0 \quad [\partial_r \psi_-^{\ell m}]_p = 0 \quad [\psi_-^{\ell m}]_p = 0 \quad (\Box - V_\ell(r)) \psi_+^{\ell m} = 0
\]

\[
R_- \quad r_{\text{peri}}^* \quad r_p^*(t) \quad R_+ \quad r_{\text{apo}}^*
\]

The particle-without-particle approach to the self-force problem
The general PwP method
The general PwP method

- We have shown [MO, CFS and ADAMS, forthcoming] that a general PwP method can be used for solving any arbitrary m-th order linear PDE with one-dimensional delta function (derivative) sources at M particles.

$$
\mathcal{L}\psi(x, y) = \sum_{i=1}^{M} \sum_{j=0}^{m-1} f_{ij}(x, y) \delta^{(j)}(x - x_{p_i}(y)).
$$
The general PwP method

- We have shown [MO, CFS and ADAMS, forthcoming] that a general PwP method can be used for solving any arbitrary m-th order linear PDE with one-dimensional delta function (derivative) sources at M particles.

$$L \psi(x, y) = \sum_{i=1}^{M} \sum_{j=0}^{m-1} f_{ij}(x, y) \delta^{(j)}(x - x_{pi}(y)).$$

The basic idea is to decompose $\psi = \sum_{i=0}^{M} \psi^i \Theta^i$ (with Θ^i suitably defined), and prove that one can match the LHS/RHS in Heaviside derivatives.
The general PwP method

- We have shown [MO, CFS and ADAMS, forthcoming] that a general PwP method can be used for solving any arbitrary m-th order linear PDE with one-dimensional delta function (derivative) sources at M particles.

$$
\mathcal{L}\psi(x, y) = \sum_{i=1}^{M} \sum_{j=0}^{m-1} f_{ij}(x, y) \delta^{(j)}(x - x_{p_i}(y)).
$$

The basic idea is to decompose $\psi = \sum_{i=0}^{M} \psi^i \Theta^i$ (with Θ^i suitably defined), and prove that one can match the LHS/RHS in Heaviside derivatives.

- The PwP does not work for nonlinear PDEs, or for sources involving delta function products.
The general PwP method

- We have shown [MO, CFS and ADAMS, forthcoming] that a general PwP method can be used for solving any arbitrary \(m \)-th order linear PDE with one-dimensional delta function (derivative) sources at \(M \) particles.

\[
\mathcal{L}\psi(x, y) = \sum_{i=1}^{M} \sum_{j=0}^{m-1} f_{ij}(x, y) \delta^{(j)}(x - x_{p_i}(y)) .
\]

The basic idea is to decompose \(\psi = \sum_{i=0}^{M} \psi^i \Theta^i \) (with \(\Theta^i \) suitably defined), and prove that one can match the LHS/RHS in Heaviside derivatives.

- The PwP does not work for nonlinear PDEs, or for sources involving delta function products.

- Example: Heat equation with constant source supported at a sinusoidally moving particle (using a Chebyshev-Lobatto grid in space and a standard finite-difference scheme in time).

The particle-without-particle approach to the self-force problem
Scalar self-force: frequency domain
Scalar self-force: frequency domain

- The PwP has already been successfully used to compute the scalar self-force in the time domain [P. Cañizares and CFS, PRD 79, 084020 (2009); CQG 28, 134011 (2011)].
Scalar self-force: frequency domain

- The PwP has already been successfully used to compute the scalar self-force in the *time domain* [P. Cañizares and CFS, PRD 79, 084020 (2009); CQG 28, 134011 (2011)].
- **Problems**: computationally too slow, not adaptable to Kerr.
Scalar self-force: frequency domain

- The PwP has already been successfully used to compute the scalar self-force in the time domain [P. Cañizares and CFS, PRD 79, 084020 (2009); CQG 28, 134011 (2011)].
- **Problems**: computationally too slow, not adaptable to Kerr.
- Move to the frequency domain! We have bound orbits, and thus discreet series:

\[
\psi_{\pm}^{\ell m}(t, r) = e^{-i m \omega \varphi^t} \sum_{n=-\infty}^{+\infty} e^{-i n \omega t} R_{\ell m n}^\pm(r).
\]
Scalar self-force: frequency domain

- The PwP has already been successfully used to compute the scalar self-force in the *time domain* [P. Cañizares and CFS, PRD 79, 084020 (2009); CQG 28, 134011 (2011)].
- **Problems**: computationally too slow, not adaptable to Kerr.
- Move to the *frequency domain*! We have bound orbits, and thus discreet series:

\[
\psi_{\pm}^{\ell m}(t, r) = e^{-im\omega_{\phi}t} \sum_{n=-\infty}^{+\infty} e^{-in\omega_{\tau}t} R_{\ell mn}^{\pm}(r).
\]

The *wave-like* PDEs for \(\psi_{\pm}^{\ell m} \) become

Schrödinger-like ODEs for \(R_{\ell mn}^{\pm} \).
Scalar self-force: frequency domain

- The PwP has already been successfully used to compute the scalar self-force in the time domain [P. Cañizares and CFS, PRD 79, 084020 (2009); CQG 28, 134011 (2011)].
- **Problems**: computationally too slow, not adaptable to Kerr.
- Move to the frequency domain! We have bound orbits, and thus discreet series:

$$\psi_{\pm}^{lm}(t, r) = e^{-im \omega \varphi t} \sum_{n=-\infty}^{+\infty} e^{-in \omega_r t} R_{\pm}^{lmn}(r).$$

The wave-like PDEs for ψ_{\pm}^{lm} become Schrödinger-like ODEs for R_{\pm}^{lmn}.
- We use a pseudospectral collocation method to find the homogeneous numerical solutions \hat{R}^-_{lmn} and \hat{R}^+_{lmn} for arbitrary BCs, then use the jump conditions to get the true solution,

$$R_{lmn} = C^-_{lmn} \hat{R}^-_{lmn} \Theta^-_p + C^+_{lmn} \hat{R}^+_{lmn} \Theta^+_p$$

The particle-without-particle approach to the self-force problem
Results and work in progress...
Results and work in progress...

- Thus far, using this method, the known value of the self-force has been recovered for *circular orbits* (in agreement with the time-domain PwP and the results of other methods in the literature).
Results and work in progress...

• Thus far, using this method, the known value of the self-force has been recovered for *circular orbits* (in agreement with the time-domain PwP and the results of other methods in the literature).

• Currently, we are working on extending this to *generic (eccentric) orbits*. [MO, CFS and ADAMS, also forthcoming].
Results and work in progress...

- Thus far, using this method, the known value of the self-force has been recovered for *circular orbits* (in agreement with the time-domain PwP and the results of other methods in the literature).

- Currently, we are working on extending this to *generic (eccentric) orbits*. [MO, CFS and ADAMS, also forthcoming].

- For future work, another objective is to also extend this method to *rotating black holes* (Kerr).
Thanks for your attention!