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Outline of lectures (1/2)

● The world's shortest introduction to General Relativity

● The linearized Einstein equations and the degrees of
freedom of General Relativity

● Gravitational waves in linearized gravity and the
quadrupole formula

● Gravitational waves in the geometric optics regime and
their stress energy tensor

● A detector's response to gravitational waves



Outline of lectures (2/2)
● GW detectors and their sources

● (A little about) matched filtering and parameter
estimation    

● Source modelling:

- Numerical relativity in a nutshell: 3+1 form of the
Einstein equations

- Analytic approximations: The Post-Newtonian
expansion, the self-force formalism, the effective one-
body model

● Fundamental physics, astrophysics and cosmology
with gravitational-wave detectors: a few examples
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● 3+1 formulation of Einstein equations and numerical relativity:
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● LISA: Pau Amaro-Seoane et al, arXiv:1201.3621 

● More specialized references for some slides
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General Relativity: a description of gravity
● Newtonian mechanics (v<< c and weak gravitational fields M/r <<

c2): gravity is a force

- Gravitational potentials satisfies Poisson's equation (aka
Newton's law of gravitation):  

- Motion described by 3 laws of Newtonian mechanics and
  namely 

● Special relativity generalizes Newtonian mechanics (but not
Newton's law of gravitation) to v ~ c by requiring that speed of
light be the same and finite in all inertial reference systems (cf
Michelson-Morley experiment!)               

Minkoswki metric 

● General relativity generalizes Newton's law of gravitation to
v ~ c and strong gravitational fields, but gravity is not a force any
more!

∇ 2 φ=4 πGρ

F⃗=m a⃗

d s2=ημνd x
μ dx ν=−c2dt 2+dx2+dy2+dz2



General Relativity in a nutshell (1/5)
● Gravity is not a force, but geometrical effect encoded in 4D metric

 

● Metric measures ”distance” between events                             and
                          , is symmetric, has signature Lorentz signature (-,+,+,+)

● Particles move along lines that minimize distance (geodesics)

● General covariance: equations of motion take same form in any
coordinate system (because defined in terms of spacetime geometry) 

In locally flat coordinates near moving particle (ie free-falling frame),
                                  non-gravitational law of physics reduce to special
relativity, and gravitational forces disappear (cf free-falling spacecraft in
Newtonian gravity)

x1
μ=(c t , x , y , z )

x2
μ=(c t , x , y , z )

d s2=gμνd x
μdx ν

Γνα
μ =1

2
gμσ(∂ν gασ+∂α g νσ−∂σ gα ν)

∇ νu
μ=∂νu

μ+Γν α
μ uαu ν=0aμ=uν ∇ νu

μ=0uμ= d x
μ

d λ gμνu
μu ν=−1

gμνu
μu ν=0

(particles with mass)

(light rays)

gμν=ημ ν+O( x)2



General Relativity in a nutshell (2/5)
● Geodesic motion generalizes Newtonian/special relativistic

mechanics, but how do we choose the metric, ie how do we
generalize Poisson's equation?

● Requirements for generalization

1) Must reduce to Poisson equation for v<<c and weak fields 

2) General covariance: equation for the gravitational field must
be the same in all coordinate systems (must be defined in
terms of 4D tensors)

3) Gravity described by metric alone (eg no gravitational
scalars)

4) Possion equation is linear and second order in the
derivatives of φ : look for simplest equation that is linear in
2nd derivatives of metric and satisfies first 3 conditions

Einstein equations



General Relativity in a nutshell (3/5)

The Einstein equations

● Stress-energy tensor         describes
matter content of spacetime,    

eg for perfect fluid

Gμ ν=Rμν−
1
2
R gμν=

8 πGT μν

c4

(Riemann tensor)

(Ricci tensor) (Ricci scalar)

T μν

T μν=(ρ+ p )uμuν+ p gμν



General Relativity in a nutshell (4/5)

Bianchi identity Gμ ν=Rμν−
1
2
R gμν=

8 πGT μν

c4∇ νG
μν=0 +

∇ νT
μ ν=0

● 4 independent components: conservation of energy and linear
momentum

● For a perfect fluid, energy conservation and Euler equation

● For dust (p=0) we get the geodesic equation. Same if we use
stress energy tensor for a single particle

Equations of motion of matter follow from Einstein equations

uμ ∂μρ=−( p+ρ)∇μu
μ aμ=−

( gμν+uμu ν)∂ν p
p+ρ



The stress energy tensor of a point particle

General Relativity in a nutshell (5/5)



The degrees of freedom of GR
● 4D metric has 10 independent components vs 1 potential of

Newtonian theory. What are the other degrees of freedom?

● Let's consider linear perturbations over Minkoskwi
background metric, ie                       , with               and           

(from now on, G=c=1) 

● If                    as           , most general decomposition is

gμν=ημ ν+hμν ∣hμν∣≪1

T μν , hμν→0 r→∞

∣T μν∣≪1



Gauge transformations
● Physics does not depend on choice of coordinates, ie we

are free to use any coordinate system

● Metric and stress energy transform as

● For a ”small” coordinate change

● Decomposing                                , the metric transforms as
 

g̃μν( x̃ )=gαβ (x ( x̃ ))
∂ xα

∂ x̃μ ( x̃ ) ∂ x
β

∂ x̃ν ( x̃ ) T̃ μν( x̃)=T αβ(x( x̃))
∂ xα

∂ x̃μ
( x̃) ∂ x

β

∂ x̃ ν ( x̃)

x̃μ=xμ+ξμ , ∣ξμ∣≪1

h̃μν=hμ ν−∂μξν−∂ν ξμ T̃ μν=T μν−ξα∂αT μν−∂μ ξ
αT α ν−∂νξ

αT μα



The Poisson gauge

∂i h
ti=∂i h

ij=0● Defined 

● Equivalent to using gauge invariant combinations  

γ=λ=ϵi=0

and

(already gauge-invariant)



The linearized Einstein equations

(from ∂μT
μ ν=0)



The linearized Einstein equations
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The linearized Einstein equations
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The linearized Einstein equations

(from ∂μT
μ ν=0)

htt ,generalizes Newtonian potential

hi
i ,appears at 1PN order, ie suppressed by (v /c)2

hti ,appears at 1PN order, ie suppressed by (v /c )2

TT part of hij ,

appears at 2PN (conservative part) and 2.5PN order (dissipative part)



1PN effects observed for a century!

2011

1916

1919



How about hTT? 

Gravitational waves!

Indirect detection: GWs 
carry energy away from 
binary, which shrinks 
(ie period decreases) Direct detection by LIGO (2015)



The generation of GWs



The generation of GWs



The generation of GWs
From stress-energy tensor conservation:



The quadrupole formula, finally!

Quadrupole tensor small
number!



Not a rigorous procedure
● We have still started from linerized theory over Minkowski

● This implies that stress energy tensor is conserved wrt to
Minkowski metric ...

● … and is used to go from ”Green formula” to ”quadrupole
formula”

● This is inconsistent as binary system in GW-dominated regimes
does NOT move on Minkowski geodesics (i.e. straight lines)

● Exercise: compute GWs from Green formula for a system of
two unequal masses on Keplerian orbits one around the other
and verify that the GW amplitudes differ by a factor 2 (assume
propagation along z axis)

● Which one is correct? Quadrupole or Green?

● One would expect Green, but actually the quadrupole formula is
the correct one 


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

